题目内容

已知a b c∈R+,a+
2
b+
3
c=2
3
,记a2+b2+c2的最小值为m.
(Ⅰ)求实数rn;
(Ⅱ)若关于x的不等式|x-3|≥m和x2+px+q≥0的解集相同,求p的值.
考点:二维形式的柯西不等式,绝对值不等式的解法
专题:选作题,推理和证明
分析:(Ⅰ)由柯西不等式(a2+b2+c2)[12+(
2
2+(
3
2]≥(a+
2
b+
3
c)2=12,故a2+b2+c2≥2;
(Ⅱ)求出不等式|x-3|≥m的解集,利用韦达定理,即可求出p的值.
解答: 解:(Ⅰ)由柯西不等式(a2+b2+c2)[12+(
2
2+(
3
2]≥(a+
2
b+
3
c)2=12,
故a2+b2+c2≥2,
当且仅当
a
1
=
b
2
=
c
3
时取等号,
∴a2+b2+c2的最小值m为2;
(Ⅱ)不等式|x-3|≥m即不等式|x-3|≥2,解得x≥5或x≤1,
∴x2+px+q≥0的解集为{x|x≥5或x≤1},
∴p=-(1+5)=-6.
点评:本题考查绝对值不等式的解法,考查二维形式的柯西不等式,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网