题目内容

已知f(x)是定义在R上的函数,且满足f(x+2)[1-f(x)]=1+f(x),f(1)=2,则f(2017)=
 
考点:函数的值
专题:计算题,函数的性质及应用
分析:由f(x+2)[1-f(x)]=1+f(x)可推出f(x+4)=-
1
f(x)
,进而推出f(x+8)=f(x),从而解得.
解答: 解:∵f(x+2)[1-f(x)]=1+f(x),
∴f(x+2)=
1+f(x)
1-f(x)

∴f(x+4)=
1+f(x+2)
1-f(x+2)

=
1+
1+f(x)
1-f(x)
1-
1+f(x)
1-f(x)
=-
1
f(x)

∴f(x+8)=-
1
f(x+4)
=f(x);
故f(2017)=f(252×8+1)=f(1)=2;
故答案为:2.
点评:本题考查了函数的性质的判断与应用,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网