题目内容

1.下列函数中,与y=x-1为同一函数的是(  )
A.y=$\sqrt{{{(x-1)}^2}}$B.y=$\root{3}{{{{(x-1)}^3}}}$C.y=$\frac{{{x^2}-1}}{x+1}$D.$y={(\sqrt{x-1})^2}$

分析 通过化简函数解析式,或求函数的定义域,判断对应法则和定义域是否都相同,从而判断两函数是否为同一函数.

解答 解:A.$y=\sqrt{(x-1)^{2}}=|x-1|$,解析式不同,不是同一函数;
B.$y=\root{3}{(x-1)^{3}}=x-1$,定义域及对应法则相同,是同一函数,即该选项正确;
C.y=x-1的定义域为R,$y=\frac{{x}^{2}-1}{x+1}$的定义域为{x|x≠-1},定义域不同,不是同一函数;
D.y=$(\sqrt{x-1})^{2}$的定义域为[1,+∞),定义域不同,不是同一函数.
故选B.

点评 考查函数的三要素:定义域,值域,和对应法则,根据定义域及对应法则即可判断两函数是否为同一函数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网