题目内容
求
(
+
+…+
).
| lim |
| n→∞ |
| 1 |
| 2! |
| 2 |
| 3! |
| n |
| (n+1)! |
考点:极限及其运算
专题:计算题
分析:由
=
-
,把已知数列的项裂项相消,求和后求极限.
| k |
| (k+1)! |
| 1 |
| k! |
| 1 |
| (k+1)! |
解答:
解:∵
=
-
,
∴
+
+…+
=1-
+
-
+…+
-
=1-
=
.
∴
(
+
+…+
)
=
=1.
| k |
| (k+1)! |
| 1 |
| k! |
| 1 |
| (k+1)! |
∴
| 1 |
| 2! |
| 2 |
| 3! |
| n |
| (n+1)! |
=1-
| 1 |
| 2! |
| 1 |
| 2! |
| 1 |
| 3! |
| 1 |
| n! |
| 1 |
| (n+1)! |
=1-
| 1 |
| (n+1)! |
| (n+1)!-1 |
| (n+1)! |
∴
| lim |
| n→∞ |
| 1 |
| 2! |
| 2 |
| 3! |
| n |
| (n+1)! |
=
| lim |
| n→∞ |
| (n+1)!-1 |
| (n+1)! |
点评:本题考查了极限及其运算,考查了利用裂项相消法求数列的和,是基础题.
练习册系列答案
相关题目