题目内容
已知f1(x)=sinx-cosx,fn+1(x)是fn(x)的导函数,即f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=fn′(x),n∈N*,则f2013(x)=( )
| A、sinx+cosx |
| B、sinx-cosx |
| C、-sinx+cosx |
| D、-sinx-cosx |
考点:导数的运算,数列的函数特性
专题:导数的概念及应用
分析:求函数的导数,寻找函数的规律性,即可得到结论.
解答:
解:∵f1(x)=sinx-cosx,
∴f2(x)=f1′(x)=cosx+sinx,
f3(x)=f2′(x)=-sinx+cosx,
f4(x)=f3′(x)=-cosx-sinx,
f5(x)=f4′(x)=sinx-cosx,
…,
fn+4(x)=fn′(x),
即函数fn(x)是周期为4的周期函数,
则f2013(x)=f503×4+1(x)=f1(x)=sinx-cosx,
故选:B
∴f2(x)=f1′(x)=cosx+sinx,
f3(x)=f2′(x)=-sinx+cosx,
f4(x)=f3′(x)=-cosx-sinx,
f5(x)=f4′(x)=sinx-cosx,
…,
fn+4(x)=fn′(x),
即函数fn(x)是周期为4的周期函数,
则f2013(x)=f503×4+1(x)=f1(x)=sinx-cosx,
故选:B
点评:本题主要考查导数的计算,要求熟练掌握常见函数的导数公式,确定函数fn(x)是周期为4的周期函数是解决本题的关键..
练习册系列答案
相关题目
(1+x)2n(n∈N*)的展开式中,系数最大的项是( )
A、第
| ||
| B、第n项 | ||
| C、第n+1项 | ||
| D、第n项与第n+1项 |
已知
和
是两个单位向量,夹角是60°,则向量2
+
和-3
+2
的夹角为( )
| a |
| b |
| a |
| b |
| a |
| b |
| A、90° | B、60° |
| C、120° | D、45° |
已知曲线y=x3,直线l是过点(1,1)且与曲线相切的直线,则直线l的方程是( )
| A、3x-y-2=0 |
| B、3x-4y+1=0 |
| C、3x-y-2=0或x-y=0 |
| D、3x-y-2=0或3x-4y+1=0 |
命题p:对?x∈R,都有x2-x+1>0成立,则p的否定形式为( )
| A、对?x∈R,都有x2-x+1≤0 |
| B、?x0∈R,都有x02-x0+1≤0 |
| C、?x0∈R,都有x02-x0+1>0 |
| D、对?x∈R,都有x2-x+1<0 |
△ABC中,若cosC=2sinAsinB-1则△ABC的形状一定是( )
| A、直角三角形 |
| B、等边三角形 |
| C、等腰直角三角形 |
| D、等腰三角形 |
平面向量的集合A到A的映射f(
)=
-(
•
)
,其中
为常向量.若映射f满足f(
)•f(
)=
•
对任意的
,
∈A恒成立,则
的坐标可能是( )
| x |
| x |
| x |
| a |
| a |
| a |
| x |
| y |
| x |
| y |
| x |
| y |
| a |
A、(
| ||||||||
B、(
| ||||||||
C、(
| ||||||||
D、(
|
已知抛物线y2=2px,过其焦点F的直线交抛物线于A.B两点,设A.B在抛物线的准线上的射影分别是A1.B1,则∠A1FB1=( )
| A、45° | B、60° |
| C、90° | D、120° |