题目内容

已知抛物线y2=2px,过其焦点F的直线交抛物线于A.B两点,设A.B在抛物线的准线上的射影分别是A1.B1,则∠A1FB1=(  )
A、45°B、60°
C、90°D、120°
考点:抛物线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:由抛物线的定义及内错角相等,可得∠AFA1=∠A1FK,同理可证∠BFB1=∠B1FK,再利用平角为180°,即∠AFA1+∠A1FK+∠BFB1+∠B1FK=180°,可得答案.
解答: 解:如图:设准线与x轴的交点为K,
∵A、B在抛物线的准线上的射影为A1、B1
由抛物线的定义可得,AA1=AF,
∴∠AA1F=∠AFA1,又由内错角相等得∠AA1F=∠A1FK,
∴∠AFA1=∠A1FK.
同理可证∠BFB1=∠B1 FK.   
由∠AFA1+∠A1FK+∠BFB1+∠B1FK=180°,
∴∠A1FK+∠B1FK=∠A1FB1=90°,
故答案为:90°
点评:本题的考点是抛物线的简单性质,主要考查抛物线的定义,考查两条直线平行,内错角相等,其中推出∠AFA1=∠A1FK是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网