题目内容

14.已知函数f(x)在(0,$\frac{π}{2}$)上处处可导,若[f(x)-f′(x)]tanx-f(x)<0,则(  )
A.$f(ln\frac{3}{2})sin(ln\frac{3}{2})$一定小于$0.6f(ln\frac{5}{2})sin(ln\frac{5}{2})$
B.$f(ln\frac{3}{2})sin(ln\frac{3}{2})$一定大于$0.6f(ln\frac{5}{2})sin(ln\frac{5}{2})$
C.$f(ln\frac{3}{2})sin(ln\frac{3}{2})$可能大于$0.6f(ln\frac{5}{2})sin(ln\frac{5}{2})$
D.$f(ln\frac{3}{2})sin(ln\frac{3}{2})$可能等于$0.6f(ln\frac{5}{2})sin(ln\frac{5}{2})$

分析 构造g(x)=f(x)sinx,根据已知条件判断g(x)与g′(x)的关系,再构造h(x)=$\frac{g(x)}{{e}^{x}}$,判断h(x)的单调性,利用单调性得出结论.

解答 解:∵[f(x)-f′(x)]tanx-f(x)<0,∴f(x)sinx<f′(x)sinx+f(x)cosx.
令g(x)=f(x)sinx,则g′(x)=f′(x)sinx+f(x)cosx>f(x)sinx=g(x).∴g′(x)-g(x)>0.
令h(x)=$\frac{g(x)}{{e}^{x}}$,则h′(x)=$\frac{g′(x)-g(x)}{{e}^{x}}$>0.∴h(x)是增函数.
∴h(ln$\frac{3}{2}$)<h(ln$\frac{5}{2}$),即$\frac{f(ln\frac{3}{2})sin(ln\frac{3}{2})}{{e}^{ln\frac{3}{2}}}$<$\frac{f(ln\frac{5}{2})sin(ln\frac{5}{2})}{{e}^{ln\frac{5}{2}}}$,化简得f(ln$\frac{3}{2}$)sin(ln$\frac{3}{2}$)<0.6f(ln$\frac{5}{2}$)sin(ln$\frac{5}{2}$).
故选:A.

点评 本题考查了导数的运算,导数与函数单调性的关系,函数单调性的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网