题目内容
11.已知tanα=3,则2sin2α-sinαcosα+cos2α的值等于( )| A. | $\frac{8}{9}$ | B. | $\frac{7}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{8}{5}$ |
分析 利用同角三角函数的基本关系,求得所给式子的值.
解答 解:∵tanα=3,则2sin2α-sinαcosα+cos2α=$\frac{{2sin}^{2}α-sinαcosα{+cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{{2tan}^{2}α-tanα+1}{{tan}^{2}α+1}$=$\frac{2•9-3+1}{9+1}$=$\frac{8}{5}$,
故选:D.
点评 本题主要考查同角三角函数的基本关系的应用,属于基础题.
练习册系列答案
相关题目
3.对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下表:
(1)画出茎叶图;
(2)分别求出甲、乙两名自行车赛手最大速度(单位:m/s)数据的平均数、方差,并判断选谁参加比赛更合适?
| 甲 | 27 | 38 | 30 | 37 | 35 | 31 |
| 乙 | 33 | 29 | 38 | 34 | 28 | 36 |
(2)分别求出甲、乙两名自行车赛手最大速度(单位:m/s)数据的平均数、方差,并判断选谁参加比赛更合适?
3.等差数列{an}的前11项和S11=88,则a3+a6+a9=( )
| A. | 18 | B. | 24 | C. | 30 | D. | 32 |
7.已知$\overrightarrow{m}$,$\overrightarrow{n}$是两个非零向量,且|$\overrightarrow{m}$|=2,|$\overrightarrow{m}$+2$\overrightarrow{n}$|=2,则|2$\overrightarrow{m}$+$\overrightarrow{n}$|+|$\overrightarrow{n}$|的最大值为( )
| A. | $\frac{8\sqrt{3}}{3}$ | B. | 3$\sqrt{3}$ | C. | $\frac{7\sqrt{3}}{2}$ | D. | 4$\sqrt{2}$ |