题目内容
若定义在R上的偶函数f(x)满足“对任意x1,x2∈(-∞,0),当x1-x2<0时,都有f(x1)-f(x2)<0”,则a=f(-2)与b=f(3)的大小关系为( )
| A、a>b | B、a<b |
| C、a=b | D、不确定 |
考点:函数单调性的性质
专题:函数的性质及应用
分析:由题意可得,函数f(x)在(-∞,0)上是增函数,f(-3)<f(-2).再根据函数f(x)为偶函数可得f(3)=f(-3)<f(-2),从而得出结论.
解答:
解:由对任意x1,x2∈(-∞,0),当x1-x2<0时,都有f(x1)-f(x2)<0,可得函数f(x)在(-∞,0)上是增函数,
故有f(-3)<f(-2).
再根据函数f(x)为偶函数可得,f(3)=f(-3)<f(-2),即b<a,
故选:A.
故有f(-3)<f(-2).
再根据函数f(x)为偶函数可得,f(3)=f(-3)<f(-2),即b<a,
故选:A.
点评:本题主要考查奇偶性和单调性的应用,属于基础题.
练习册系列答案
相关题目
已知|
|=2,|
|=1,
⊥
,若
+λ
与
-λ
的夹角θ是某锐角三角形的最大角,且λ<0,则λ的取值范围是?( )
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| A、-2<λ<0 | ||||
| B、λ<-2 | ||||
C、-2<λ≤-
| ||||
D、-
|
cos(35°+x)cos(55°-x)-sin(35°+x)sin(55°-x)的值是( )
| A、0 | B、-1 | C、±1 | D、1 |
设集合A={1,2,3,4,5},B={4,5,6},则满足S⊆A且S∩B≠∅的集合S个数是( )
| A、33 | B、32 | C、25 | D、24 |
已知函数f(x)=x2-2ax-2alnx(a∈R,a≠0),则下列说法错误的是( )
| A、若a<0,则f(x)有零点 | ||
B、若f(x)有零点,则a≤
| ||
| C、?a>0使得f(x)有唯一零点 | ||
D、若f(x)有唯一零点,则a≤
|
| AP |
| AB |
| AE |
| A、[-1,1] |
| B、[-1,2] |
| C、[-2,1] |
| D、[0,2] |
一般地,在两个分类变量的独立性检验过程中有如下表格:如图是两个分类变量X﹑Y的2×2联表的一部分,则下列说法正确的是( )
| P(K2≥k0) | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
| y1 | y2 | |
| x1 | 15 | 5 |
| x2 | 10 | 15 |
| A、可以在犯错误概率不超过0.025的前提下认为X与Y有关系 |
| B、可以在犯错误概率不超过0.010的前提下认为X与Y有关系 |
| C、可以在犯错误概率不超过0.005的前提下认为X与Y有关系 |
| D、可以在犯错误概率不超过0.001的前提下认为X与Y有关系 |