题目内容

已知
a
=(1,1,0),
b
=(-1,0,2),且k
a
+
b
与2
a
-
b
垂直,则k的值为(  )
A、
1
5
B、1
C、
3
5
D、
7
5
考点:平面向量数量积的运算
专题:平面向量及应用
分析:先求出 k
a
+
b
和2
a
-
b
的坐标,根据k
a
+
b
与2
a
-
b
垂直,可得(k
a
+
b
)•(2
a
-
b
)=0,由此解得k的值.
解答: 解:∵已知
a
=(1,1,0),
b
=(-1,0,2),∴k
a
+
b
=(k-1,k,2),2
a
-
b
=(3,2,-2),
∵k
a
+
b
与2
a
-
b
垂直,∴(k
a
+
b
)•(2
a
-
b
)=3(k-1)+2k+2×(-2)=0,解得k=
7
5

故选:D.
点评:本题主要考查两个向量垂直的性质,两个向量坐标形式的运算,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网