题目内容
16.设M={a,b,c},N={-2,0,2},从M到N的映射满足f(a)>f(b)≥f(c),这样的映射f的个数为( )| A. | 1 | B. | 2 | C. | 4 | D. | 5 |
分析 由题意及映射概念逐一写出满足条件的映射得答案.
解答 解:M={a,b,c},N={-2,0,2},
∵f(a)>f(b)≥f(c),
∴a对应2时,b对应0,c对应0或-2,有2个映射;
a对应2时,b对应-2,c对应-2,有1个映射;
a对应0时,b对应-2,c对应-2,有1个映射.
综上,满足条件的映射个数为4个.
故选C.
点评 本题考查映射的概念,关键是对题意及映射概念的理解,是基础题.
练习册系列答案
相关题目
7.已知$tan(θ+\frac{π}{4})=\frac{1}{7}$且-$\frac{π}{2}$<θ<0,则sinθ=( )
| A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $-\frac{3}{5}$ | D. | $-\frac{4}{5}$ |
4.设min{p,q,r}为表示p,q,r三者中较小的一个,若函数f(x)=min{x+1,-2x+7,x2-x+1},且函数f(x)的图象与直线y=m有四个交点,则m的取值范围是( )
| A. | [$\frac{3}{4}$,1] | B. | [$\frac{3}{4}$,1) | C. | ($\frac{3}{4}$,1] | D. | ($\frac{3}{4}$,1) |
11.如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的体积为( )

| A. | $\frac{8}{3}$ | B. | $\frac{4}{3}$ | C. | 4$\sqrt{3}$ | D. | 2$\sqrt{3}$ |
8.已知{an}是等比数列,a2=2,a5=$\frac{1}{4}$,则a1a2+a2a3+…+anan+1=( )
| A. | 16(1-4-n) | B. | 16(1-2-n) | C. | $\frac{32}{3}(1-{4^{-n}})$ | D. | $\frac{32}{3}(1-{2^{-n}})$ |
5.已知集合M={x|x2>4},N={-3,-2,2,3,4},则M∩N=( )
| A. | {3,4} | B. | {-3,3,4} | C. | {-2,3,4} | D. | {-3,-2,2,3,4} |