题目内容

已知函数y=f(x)是定义在R上的奇函数,对?x∈R都有f(x-1)=f(x+1)成立,当x∈(0,1]且x1≠x2时,有
f(x2)-f(x1)
x2-x1
<0.给出下列命题:
(1)f(1)=0
(2)f(x)在[-2,2]上有5个零点
(3)(2013,0)是函数y=f(x)的一个对称中心
(4)直线是函数y=f(x)图象的一条对称轴
则正确命题个数是(  )
A、1B、2C、3D、4
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:根据已知,分析出函数的周期和单调性,进而画出满足条件的函数的草图,逐一分析四个结论的真假,可得答案.
解答: 解:∵对?x∈R都有f(x-1)=f(x+1)成立,
∴对?x∈R都有f(x+2)=f(x)成立,
即函数y=f(x)是周期为2的周期函数,
∴f(1)=f(-1).
∵当x∈(0,1]且x1≠x2时,有
f(x2)-f(x1)
x2-x1
<0,
∴在区间(0,1]上函数为减函数.
又∵函数y=f(x)是定义在R上的奇函数,
∴f(1)=-f(-1).
∴f(1)=0,即(1)正确;
满足条件的函数y=f(x)的草图如下所示:

由图可知:
f(x)在[-2,2]上有:-2,-1,0,1,2,共5个零点,即(2)正确;
所有(k,0)(k∈Z)点均为函数的对称中心,故(3)(2013,0)是函数y=f(x)的一个对称中心,正确;
函数y=f(x)图象无对称轴,故(4)错误;
则正确命题个数是3个
故选:C
点评:本题考查的知识点是函数奇偶性的性质,函数的周期性,函数的单调性,是函数图象和性质的综合应用,难度中档.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网