题目内容
19.己知函数$f(x)=\left\{\begin{array}{l}{log_2}x,x>0\\-\frac{1}{x},x<0\end{array}\right.$,则$f({f({\frac{1}{4}})})$=$\frac{1}{2}$.分析 先求出f($\frac{1}{4}$)=$lo{g}_{2}\frac{1}{4}$=-2,从而$f({f({\frac{1}{4}})})$=f(-2),由此能求出结果.
解答 解:∵函数$f(x)=\left\{\begin{array}{l}{log_2}x,x>0\\-\frac{1}{x},x<0\end{array}\right.$,
∴f($\frac{1}{4}$)=$lo{g}_{2}\frac{1}{4}$=-2,
$f({f({\frac{1}{4}})})$=f(-2)=-$\frac{1}{-2}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关题目
9.设函数f(x)=sin(2x+φ)(φ是常数),若$f(0)=f(\frac{2π}{3})$,则$f(\frac{π}{12})$,$f(\frac{4π}{3})$,$f(\frac{π}{2})$之间的大小关系可能是( )
| A. | $f(\frac{π}{2})<f(\frac{4π}{3})<f(\frac{π}{12})$ | B. | f($\frac{π}{12}$)<f($\frac{π}{2}$)<f($\frac{4π}{3}$) | C. | $f(\frac{π}{2})<f(\frac{π}{12})<f(\frac{4π}{3})$ | D. | $f(\frac{π}{12})<f(\frac{4π}{3})<f(\frac{π}{2})$ |
10.已知变量x,y满足约束条件$\left\{\begin{array}{l}x-y≤0\\ x+y≤2\\ x≥0\end{array}\right.$,若 z=ax+y的最大值为4,则a=( )
| A. | 3 | B. | 2 | C. | -2 | D. | -3 |
8.已知i是虚数单位,且m(1+i)=7+ni(m,n∈R),则$\frac{m+ni}{2m-ni}$的虚部等于( )
| A. | $\frac{1}{7}$ | B. | $\frac{3}{14}$ | C. | $\frac{1}{5}$ | D. | $\frac{3}{5}$ |
9.若直线y=k(x+2)上存在点(x,y)满足$\left\{\begin{array}{l}x-y≥0\\ x+y≤1\\ y≥-1\end{array}\right.$,则实数k的取值范围是( )
| A. | $[{-1,-\frac{1}{4}}]$ | B. | $[{-1,\frac{1}{5}}]$ | C. | $({-∞,-1}]∪[{\frac{1}{5},+∞})$ | D. | $[{-\frac{1}{4},\frac{1}{5}}]$ |