题目内容
8.若(1-2x)2017=a0+a1x+…a2017x2017(x∈R),则$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2017}}{{2}^{2017}}$的值为-1.分析 由(1-2x)2017=a0+a1x+…a2017x2017(x∈R),令x=0,可得1=a0.令x=$\frac{1}{2}$,可得0=1+$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2017}}{{2}^{2017}}$,即可得出.
解答 解:由(1-2x)2017=a0+a1x+…a2017x2017(x∈R),
令x=0,可得1=a0.
令x=$\frac{1}{2}$,可得0=1+$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2017}}{{2}^{2017}}$,
∴$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2017}}{{2}^{2017}}$=-1,
故答案为:-1.
点评 本题考查了二项式定理的应用、方程的应用,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
18.若tan(α+80°)=4sin420°,则tan(α+20°)的值为( )
| A. | -$\frac{\sqrt{3}}{5}$ | B. | $\frac{3\sqrt{3}}{5}$ | C. | $\frac{\sqrt{3}}{19}$ | D. | $\frac{\sqrt{3}}{7}$ |
13.拖延症总是表现在各种小事上,但日积月累,特别影响个人发展,某校的一个社会实践调查小组,在对该校学生进行“是否有明显拖延症”的调查中,随机发放了110份问卷.对收回的100份有效问卷进行统计,得到如下2×2列联表:
(Ⅰ)按女生是否有明显拖延症进行分层,已经从40份女生问卷中抽取了8份问卷,现从这8份问卷中再随机抽取3份,并记其中无明显拖延症的问卷的份数为X,试求随机变量X的分布列和数学期望;
(2)若在犯错误的概率不超过P的前提下认为无明显拖延症与性别有关,那么根据临界值表,最精确的P的值应为多少?请说明理由
附:独立性检验统计量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
| 有明显拖延症 | 无明显拖延症 | 合计 | |
| 男 | 35 | 25 | 60 |
| 女 | 30 | 10 | 40 |
| 总计 | 65 | 35 | 100 |
(2)若在犯错误的概率不超过P的前提下认为无明显拖延症与性别有关,那么根据临界值表,最精确的P的值应为多少?请说明理由
附:独立性检验统计量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
| P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |