ÌâÄ¿ÄÚÈÝ
13£®ÍÏÑÓÖ¢×ÜÊDZíÏÖÔÚ¸÷ÖÖСÊÂÉÏ£¬µ«ÈÕ»ýÔÂÀÛ£¬ÌرðÓ°Ïì¸öÈË·¢Õ¹£¬Ä³Ð£µÄÒ»¸öÉç»áʵ¼ùµ÷²éС×飬ÔÚ¶Ô¸ÃУѧÉú½øÐС°ÊÇ·ñÓÐÃ÷ÏÔÍÏÑÓÖ¢¡±µÄµ÷²éÖУ¬Ëæ»ú·¢·ÅÁË110·ÝÎÊ¾í£®¶ÔÊջصÄ100·ÝÓÐЧÎÊ¾í½øÐÐͳ¼Æ£¬µÃµ½ÈçÏÂ2¡Á2ÁÐÁª±í£º| ÓÐÃ÷ÏÔÍÏÑÓÖ¢ | ÎÞÃ÷ÏÔÍÏÑÓÖ¢ | ºÏ¼Æ | |
| ÄÐ | 35 | 25 | 60 |
| Å® | 30 | 10 | 40 |
| ×Ü¼Æ | 65 | 35 | 100 |
£¨2£©ÈôÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ýPµÄǰÌáÏÂÈÏΪÎÞÃ÷ÏÔÍÏÑÓÖ¢ÓëÐÔ±ðÓйأ¬ÄÇô¸ù¾ÝÁÙ½çÖµ±í£¬×ȷµÄPµÄֵӦΪ¶àÉÙ£¿Çë˵Ã÷ÀíÓÉ
¸½£º¶ÀÁ¢ÐÔ¼ìÑéͳ¼ÆÁ¿K2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬n=a+b+c+d
| P£¨K2¡Ýk0£© | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
·ÖÎö £¨1£©·Ö²ã´Ó40·ÝÅ®ÉúÎʾíÖгéÈ¡ÁË8·ÝÎÊ¾í£¬ÓÐÃ÷ÏÔÍÏÑÓÖ¢6ÈË£¬¡°ÎÞÃ÷ÏÔÍÏÑÓÖ¢2ÈË£¬Èô´ÓÕâ8·ÝÎʾíÖÐËæ»ú³éÈ¡3·Ý£¬Ëæ»ú±äÁ¿X=0£¬1£¬2£®ÀûÓá°³¬¼¸ºÎ·Ö²¼¡±¼´¿ÉµÃ³ö·Ö²¼Áм°ÆäÊýѧÆÚÍû£»
£¨2£©¸ù¾Ý¡°¶ÀÁ¢ÐÔ¼ìÑéµÄ»ù±¾Ë¼ÏëµÄÓ¦Óá±¼ÆË㹫ʽ¿ÉµÃK2µÄ¹Û²âÖµk£¬¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©´Ó40·ÝÅ®ÉúÎʾíÖгéÈ¡ÁË8·ÝÎÊ¾í£¬ÓÐÃ÷ÏÔÍÏÑÓÖ¢6ÈË£¬¡°ÎÞÃ÷ÏÔÍÏÑÓÖ¢2ÈË£®¡£¨2·Ö£©
ÔòËæ»ú±äÁ¿X=0£¬1£¬2£¬¡£¨3·Ö£©
¡àP£¨X=0£©=$\frac{{C}_{6}^{3}}{{C}_{8}^{3}}$=$\frac{5}{14}$£»P£¨X=1£©=$\frac{{C}_{6}^{2}{C}_{2}^{1}}{{C}_{8}^{3}}$=$\frac{15}{28}$£¬P£¨X=2£©=$\frac{{C}_{6}^{1}{C}_{2}^{2}}{{C}_{8}^{3}}$=$\frac{3}{28}$¡£¨6·Ö£©
·Ö²¼ÁÐΪ
| X | 0 | 1 | 2 |
| P | $\frac{5}{14}$ | $\frac{15}{28}$ | $\frac{3}{28}$ |
E£¨X£©=0¡Á$\frac{5}{14}$+1¡Á$\frac{15}{28}$+2¡Á$\frac{3}{28}$=$\frac{3}{4}$£® ¡£¨8·Ö£©
£¨2£©K2=$\frac{100£¨35¡Á10-30¡Á25£©^{2}}{65¡Á35¡Á60¡Á40}$¡Ö2.930 ¡£¨10·Ö£©
Óɱí¿ÉÖª2.706£¼2.93£¼3.840£»
¡àP=0.10£® ¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÁË×éºÏÊýµÄ¼ÆË㹫ʽ¡¢¹Åµä¸ÅÂʼÆË㹫ʽ¡¢¡°³¬¼¸ºÎ·Ö²¼¡±·Ö²¼Áм°ÆäÊýѧÆÚÍû¹«Ê½¡¢¡°¶ÀÁ¢ÐÔ¼ìÑéµÄ»ù±¾Ë¼ÏëµÄÓ¦Óá±¼ÆË㹫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | -$\frac{\sqrt{3}}{5}$ | B£® | $\frac{3\sqrt{3}}{5}$ | C£® | $\frac{\sqrt{3}}{7}$ | D£® | $\frac{\sqrt{3}}{19}$ |
| A£® | £¨-1£¬0£© | B£® | £¨0£¬3£© | C£® | {0£¬3} | D£® | {3} |
| A£® | [1£¬+¡Þ£© | B£® | $[{\frac{1}{2}£¬1}]$ | C£® | $[{\frac{2}{3}£¬+¡Þ}£©$ | D£® | £¨1£¬+¡Þ£© |