题目内容
已知向量|
|=|
|=2,且
•
=2,则|
+
|= .
| a |
| b |
| a |
| b |
| a |
| b |
考点:平面向量数量积的运算
专题:平面向量及应用
分析:不妨取
=(2,0),
=(x,y),由于向量|
|=|
|=2,且
•
=2,可得
=2,2x=2,解出即可.
| a |
| b |
| a |
| b |
| a |
| b |
| x2+y2 |
解答:
解:不妨取
=(2,0),
=(x,y),
∵向量|
|=|
|=2,且
•
=2,
∴
=2,2x=2,
解得x=1,y=±
.
则|
+
|=|(3,±
)|=
=2
.
故答案为:2
.
| a |
| b |
∵向量|
| a |
| b |
| a |
| b |
∴
| x2+y2 |
解得x=1,y=±
| 3 |
则|
| a |
| b |
| 3 |
| 9+3 |
| 3 |
故答案为:2
| 3 |
点评:本题考查了向量的数量积运算、模的计算公式,属于基础题.
练习册系列答案
相关题目
已知向量
=(1,y,-2),
=(-2,2,z),若
∥
,则y+z=( )
| a |
| b |
| a |
| b |
| A、5 | B、3 | C、-3 | D、-5 |