题目内容

若实数x,y满足3≤xy2≤8,4≤
x2
y
≤9,则
x3
y4
的最大值是36.
 
(对或错)
考点:基本不等式
专题:不等式的解法及应用
分析:由条件3≤xy2≤8,4≤
x2
y
≤9可得16≤(
x2
y
)2
≤81,
1
8
1
xy2
1
3
,利用不等式的性质相乘可得.
解答: 解:∵3≤xy2≤8,4≤
x2
y
≤9,
∴16≤(
x2
y
)2
≤81,
1
8
1
xy2
1
3

∴2≤(
x2
y
)
2
1
xy2
≤27,
又∵
x3
y4
=(
x2
y
)
2
1
xy2

x3
y4
的最大值是27.
故答案为:错
点评:本题考查不等式的性质,属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网