题目内容
7.(Ⅰ)求sin∠BAD的值;
(Ⅱ)求cos∠ADC及AC边的长.
分析 (1)由正弦定理即可解得sin∠BAD的值;
(2)先求得cosB,cos∠BAD,利用两角和的余弦函数公式可求cos∠ADC,由题意可求DC=BD=2,利用余弦定理即可求得AC的值.
解答 解:(1)在△ABD中,BD=2,sinB=$\frac{3\sqrt{6}}{8}$,AD=3,
∴由正弦定理$\frac{BD}{sin∠BAD}$=$\frac{AD}{sinB}$,得sin∠BAD═$\frac{BDsinB}{AD}$=$\frac{2×\frac{3\sqrt{6}}{8}}{3}$=$\frac{\sqrt{6}}{4}$;….(5分)
(2)∵sinB=$\frac{3\sqrt{6}}{8}$,∴cosB=$\frac{\sqrt{10}}{8}$,
∵sin∠BAD=$\frac{\sqrt{6}}{4}$,∴cos∠BAD=$\frac{\sqrt{10}}{4}$,
∴cos∠ADC=cos(∠B+∠BAD)=$\frac{\sqrt{10}}{8}$×$\frac{\sqrt{10}}{4}$-$\frac{3\sqrt{6}}{8}$×$\frac{\sqrt{6}}{4}$=-$\frac{1}{4}$,….(9分)
∵D为BC中点,∴DC=BD=2,
∴在△ACD中,由余弦定理得:AC2=AD2+DC2-2AD•DCcos∠ADC=9+4+3=16,
∴AC=4.….(12分)
点评 点评:此题考查了正弦、余弦定理,两角和与差的余弦函数公式,熟练掌握定理是解本题的关键.
练习册系列答案
相关题目
15.已知某几何体的正视图和侧视图均如图所示,给出下列5个图形:

其中可以作为该几何体的俯视图的图形个数是( )
其中可以作为该几何体的俯视图的图形个数是( )
| A. | 5个 | B. | 4个 | C. | 3个 | D. | 2个 |
2.i是虚数单位.已知复数$Z=\frac{1+3i}{3+i}+{({1+i})}^2$,则复数Z对应点落在( )
| A. | 第四象限 | B. | 第三象限 | C. | 第二象限 | D. | 第一象限 |
19.执行下面的程序框图,则输出的m的值为( )

| A. | 2 | B. | 4 | C. | 5 | D. | 9 |