题目内容

19.已知函数$f(x)={log_a}x-3{log_a}2,\;a∈\{\frac{1}{5},\frac{1}{4},2,4,5,8,9\}$,则f(3a+2)>f(2a)>0的概率为(  )
A.$\frac{1}{3}$B.$\frac{3}{7}$C.$\frac{1}{2}$D.$\frac{4}{7}$

分析 利用对数的运算性质化简已知函数解析式,结合条件f(3a+2)>f(2a)>0求得a的个数,利用几何概型得答案.

解答 解:∵$f(x)=lo{g}_{a}x-3lo{g}_{a}2=lo{g}_{a}\frac{x}{8}$,
且a∈{$\frac{1}{5}$,$\frac{1}{4}$,2,4,5,8,9},$\left\{\begin{array}{l}{3+2a>2a}\\{2a>1}\\{\frac{2a}{8}>1}\end{array}\right.$
∴基本事件总数为7.
当a>1时,由f(3a+2)>f(2a)>0,得$\left\{\begin{array}{l}{3+2a>2a}\\{2a>1}\\{\frac{2a}{8}>1}\end{array}\right.$,
解得a>4,即a=5,8,9时才成立;
当a<1时,3a+2<2a,即a<-2,∴a不存在.
∴满足f(3a+2)>f(2a)>0的基本事件个数为3,
∴满足f(3a+2)>f(2a)>0的概率为$\frac{3}{7}$.
故选:B.

点评 本题考查几何概型,考查了对数函数的性质,关键是对题意的理解,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网