题目内容

在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a-c=
6
6
b,sinB=
6
sinC,
(Ⅰ)求cosA的值;
(Ⅱ)求cos(2A-
π
6
)的值.
考点:正弦定理,两角和与差的余弦函数
专题:三角函数的求值
分析:(Ⅰ)已知第二个等式利用正弦定理化简,代入第一个等式表示出a,利用余弦定理表示出cosA,将表示出的a,b代入计算,即可求出cosA的值;
(Ⅱ)由cosA的值,利用同角三角函数间的基本关系求出sinA的值,进而利用二倍角的正弦、余弦函数公式求出sin2A与cos2A的值,原式利用两角和与差的余弦函数公式及特殊角的三角函数值化简,将各自的值代入计算即可求出值.
解答: 解:(Ⅰ)将sinB=
6
sinC,利用正弦定理化简得:b=
6
c,
代入a-c=
6
6
b,得:a-c=c,即a=2c,
∴cosA=
b2+c2-a2
2bc
=
6c2+c2-4c2
2
6
c2
=
6
4

(Ⅱ)∵cosA=
6
4
,A为三角形内角,
∴sinA=
1-cos2A
=
10
4

∴cos2A=2cos2A-1=-
1
4
,sin2A=2sinAcosA=
15
4

则cos(2A-
π
6
)=cos2Acos
π
6
+sin2Asin
π
6
=-
1
4
×
3
2
+
15
4
×
1
2
=
15
-
3
8
点评:此题考查了正弦、余弦定理,同角三角函数间的基本关系,二倍角的正弦、余弦函数公式,以及两角和与差的余弦函数公式,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网