ÌâÄ¿ÄÚÈÝ

ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬a1=1£¬an=
Sn
n
+2 £¨n-1£©£¨n¡ÊN*£©£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{an}ΪµÈ²îÊýÁУ¬²¢·Ö±ðд³öanºÍSn¹ØÓÚnµÄ±í´ïʽ£»
£¨2£©ÊÇ·ñ´æÔÚ×ÔÈ»Êýn£¬Ê¹µÃS1+
S2
2
+
S3
3
+¡­+
Sn
n
-£¨n-1£©2=2013£¿Èô´æÔÚ£¬Çó³önµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©ÉèCn=
2
n(an+7)
£¨n¡Ê{N*}£©£¬Tn=c1+c2+c3+¡­+cn£¨n¡ÊN*£©£¬ÊÇ·ñ´æÔÚ×î´óµÄÕûÊým£¬Ê¹µÃ¶ÔÈÎÒân¡ÊN*¾ùÓÐTn£¾
m
32
³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ömµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
¿¼µã£ºÊýÁеÄÇóºÍ,µÈ²îÊýÁеÄÐÔÖÊ
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ,²»µÈʽµÄ½â·¨¼°Ó¦ÓÃ
·ÖÎö£º£¨1£©°ÑµÝÍÆÊ½±äÐεõ½Sn=nan-2n£¨n-1£©£¨n¡ÊN*£©£¬½áºÏn¡Ý2ʱan=Sn-Sn-1µÃµ½ÊýÁÐ{an}ÊÇÒÔ1ΪÊ×ÏÒÔ4Ϊ¹«²îµÄµÈ²îÊýÁУ¬½øÒ»²½Çó³öanºÍSn£»
£¨2£©°ÑSn´úÈëS1+
S2
2
+
S3
3
+¡­+
Sn
n
-£¨n-1£©2=2013»¯¼ò¼´¿ÉÇóµÃnµÄÖµ£»
£¨3£©°Ñan´úÈëCn=
2
n(an+7)
£¬ÕûÀíºóÇóµÃTn=c1+c2+c3+¡­+cn£¬ÔÙÓÉTn£¾
m
32
³ÉÁ¢ÇóµÃ×î´óµÄÕûÊým£®
½â´ð£º £¨1£©Ö¤Ã÷£ºÓÉan=
Sn
n
+2£¨n-1£©£¬
µÃSn=nan-2n£¨n-1£©£¨n¡ÊN*£©£®
µ±n¡Ý2ʱ£¬an=Sn-Sn-1=nan-£¨n-1£©an-1-4£¨n-1£©£¬
¼´an-an-1=4£¬
¹ÊÊýÁÐ{an}ÊÇÒÔ1ΪÊ×ÏÒÔ4Ϊ¹«²îµÄµÈ²îÊýÁУ®
ÓÚÊÇ£¬an=4n-3£¬
Sn=
(a1+an)n
2
=2n2-n £¨n¡ÊN*£©£»
£¨2£©½â£ºÓÉSn=nan-2n£¨n-1£©£¬µÃ
Sn
n
=2n-1 £¨n¡ÊN*£©£¬
ÓÖS1+
S2
2
+
S3
3
+¡­+
Sn
n
-£¨n-1£©2=1+3+5+7+¡­+£¨2n-1£©-£¨n-1£©2=n2-£¨n-1£©2=2n-1£®
Áî2n-1=2013£¬µÃn=1007£¬¼´´æÔÚÂú×ãÌõ¼þµÄ×ÔÈ»Êýn=1007£»
£¨3£©½â£º¡ßCn=
2
n(an+7)
=
1
n(2n+2)
=
1
2
(
1
n
-
1
n+1
)
£¬
¡àTn=c1+c2+c3+¡­+cn
=
1
2
[(1-
1
2
)+(
1
2
-
1
3
)+¡­+(
1
n
-
1
n+1
)]

=
1
2
(1-
1
n+1
)=
n
2(n+1)
£®
ҪʹTn£¾
m
32
×ܳÉÁ¢£¬Ðè
m
32
£¼T1=
1
4
³ÉÁ¢£¬¼´m£¼8ÇÒm¡ÊZ£¬
¹ÊÊʺÏÌõ¼þµÄmµÄ×î´óֵΪ7£®
µãÆÀ£º±¾Ì⿼²éÁËÊýÁеÝÍÆÊ½£¬¿¼²éÁ˵ȲîÊýÁеÄÐÔÖÊ£¬ÑµÁ·ÁË´íλÏà¼õ·¨ÇóÊýÁеĺͣ¬¿¼²éÁËÀûÓò»µÈʽºã³ÉÁ¢Çó²ÎÊýµÄȡֵ·¶Î§£¬ÊÇÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø