题目内容
已知向量
=(cos
x,sin
x),
=(cos
,-sin
),且x∈[0,
],
(1)求
•
及|
+
|;
(2)求函数f(x)=
•
-2|
+
|的最小值;
(3)若f(x)=
•
-λ|
+
|的最小值是-
,求实数λ的值.
| a |
| 3 |
| 2 |
| 3 |
| 2 |
| b |
| x |
| 2 |
| x |
| 2 |
| π |
| 2 |
(1)求
| a |
| b |
| a |
| b |
(2)求函数f(x)=
| a |
| b |
| a |
| b |
(3)若f(x)=
| a |
| b |
| a |
| b |
| 3 |
| 2 |
考点:平面向量数量积的运算
专题:平面向量及应用
分析:(1)利用向量数量积公式和余弦加法定理能求出
•
=cos2x.从而得到(
+
)2=
2+2
•
+
2=2+2cos2x
=4cos2x,x∈[0,
],由此能求出|
+
|=2cosx.
(2)f(x)=
•
-2|
+
|=cos2x-2cosx=2cos2x-2cosx-1,由此利用配方法能求出其最小值.
(3)f(x)=
•
-λ|
+
=2(cosx-λ)2-2λ2-1,由此利用分类讨论思想能求出实数λ的值.
| a |
| b |
| a |
| b |
| a |
| a |
| b |
| b |
=4cos2x,x∈[0,
| π |
| 2 |
| a |
| b |
(2)f(x)=
| a |
| b |
| a |
| b |
(3)f(x)=
| a |
| b |
| a |
| b |
解答:
解:(1)∵向量
=(cos
x,sin
x),
=(cos
,-sin
),且x∈[0,
],
∴
•
=cos
cos
-sin
sin
=cos(
+
)
=cos2x.
∵(
+
)2=
2+2
•
+
2
=2+2
•
=2+2cos2x
=4cos2x,x∈[0,
],
∴|
+
|=2cosx.
(2)由(1)知f(x)=
•
-2|
+
|=cos2x-2cosx
=2cos2x-2cosx-1
=2(cosx-
)2-
,
∵x∈[0,
],
∴cosx=
,即x=
时,f(x)=
•
-2|
+
|取最小值-
.
(3)f(x)=
•
-λ|
+
=cos2x-4λcosx
=2cos2x-4λcosx-1
=2(cosx-λ)2-2λ2-1,
若λ>1,f(x)min=1-4λ<-3,与题意不符;
若λ<0,f(x)min=-1,与题意不符;
若0≤λ<1,f(x)min=-2λ2-1,
由-2λ2-1=-
,λ∈[0,1],得λ=
,
∴实数λ的值为
.
| a |
| 3 |
| 2 |
| 3 |
| 2 |
| b |
| x |
| 2 |
| x |
| 2 |
| π |
| 2 |
∴
| a |
| b |
| 3x |
| 2 |
| x |
| 2 |
| 3x |
| 2 |
| x |
| 2 |
=cos(
| 3x |
| 2 |
| x |
| 2 |
=cos2x.
∵(
| a |
| b |
| a |
| a |
| b |
| b |
=2+2
| a |
| b |
=2+2cos2x
=4cos2x,x∈[0,
| π |
| 2 |
∴|
| a |
| b |
(2)由(1)知f(x)=
| a |
| b |
| a |
| b |
=2cos2x-2cosx-1
=2(cosx-
| 1 |
| 2 |
| 3 |
| 2 |
∵x∈[0,
| π |
| 2 |
∴cosx=
| 1 |
| 2 |
| π |
| 3 |
| a |
| b |
| a |
| b |
| 3 |
| 2 |
(3)f(x)=
| a |
| b |
| a |
| b |
=cos2x-4λcosx
=2cos2x-4λcosx-1
=2(cosx-λ)2-2λ2-1,
若λ>1,f(x)min=1-4λ<-3,与题意不符;
若λ<0,f(x)min=-1,与题意不符;
若0≤λ<1,f(x)min=-2λ2-1,
由-2λ2-1=-
| 3 |
| 2 |
| 1 |
| 2 |
∴实数λ的值为
| 1 |
| 2 |
点评:本题考查数量积的运算及其应用,是中档题,解题时要认真审题,注意三角函数知识的灵活运用.
练习册系列答案
相关题目