题目内容

已知函数f(x)=ax3+bsinx+2(a,b∈R且ab≠0),f(lg(log310))=3,则f(lg(lg3))=(  )
A、2B、1C、0D、-1
考点:函数奇偶性的性质,对数的运算性质
专题:函数的性质及应用
分析:由函数f(x)=ax3+bsinx+2(a,b∈R且ab≠0),可得f(-x)+f(x)=4.而lg(log310)=lg(
1
lg3
)
=-lg(lg3),可得f(lg(log310))+f(lg(lg3))=4,解出即可.
解答: 解:∵函数f(x)=ax3+bsinx+2(a,b∈R且ab≠0),
∴f(-x)+f(x)=4.
∵lg(log310)=lg(
1
lg3
)
=-lg(lg3),
∴f(lg(log310))+f(lg(lg3))=4  
∵f(lg(log310))=3,
∴f(lg(lg3))=4-3=1.
故选:B.
点评:本题考查了函数奇偶性、对数的运算法则,考查了计算能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网