题目内容
已知集合A={正方体},B={长方体},C={正四棱柱},D={直平行六面体},则( )
| A、A⊆B⊆C⊆D |
| B、C⊆A⊆B⊆D |
| C、A⊆C⊆B⊆D |
| D、它们之间不都存在包含关系 |
考点:棱柱的结构特征
专题:空间位置关系与距离
分析:根据这六种几何体的特征,可以知道包含元素最多的是直平行六面体,包含元素最少的是正方体,其次是正四棱柱,得到结果.
解答:
解:在这4种图形中,包含元素最多的是直平行六面体,其次是长方体,
最小的是正方体,其次是正四棱柱,
在四个选项中,只有C符合这四个之间的关系,
其他的不用再分析,
故选C.
最小的是正方体,其次是正四棱柱,
在四个选项中,只有C符合这四个之间的关系,
其他的不用再分析,
故选C.
点评:本题考查四棱柱的结构特征,考查集合之间的包含关系的判断及应用,是一个比较全面的题目.
练习册系列答案
相关题目
若sinαcosα>0,则α在( )
| A、第一或第二象限 |
| B、第一或第三象限 |
| C、第一或第四象限 |
| D、第二或第四象限 |
已知抛物线y2=2px(p>0)的焦点为F,抛物线上的3个点A,B,C的横坐标之比为3:4:5,则以|FA|,|FB|,|FC|为边长的三角形( )
| A、不存在 |
| B、必是锐角三角形 |
| C、必是钝角三角形 |
| D、必是直角三角形 |
方程
•
=|x+y-2|表示的曲线是( )
| 2 |
| (x+1)2+(y+1)2 |
| A、椭圆 | B、双曲线 |
| C、抛物线 | D、不能确定 |