题目内容

对具有线性相关关系的变量x,y,测得一组数据如下表:
x 2 4 5 6 8
y 20 40 60 70 80
参考公式:b=
R
i=1
x2y2-n
.
x
.
y
n
i=1
x
2
i
-n
.
x2
根据上表,利用最小二乘法得它们的回归直线方程为 
y
=bx+1.5,据此模型来预测当x=20时,y的估计值为(  )
A、210.5B、212.5
C、210D、211.5
考点:线性回归方程
专题:计算题,概率与统计
分析:求出横标和纵标的平均数,写出样本中心点,把样本中心点代入线性回归方程,得到关于b的方程,解方程求出b,最后将x=20代入求出相应的y即可.
解答: 解:∵
.
x
=
2+4+5+6+8
5
=5,
.
y
=
20+40+60+70+80
5
=54
∴这组数据的样本中心点是(5,54)
把样本中心点代入回归直线方程
y
=bx+1.5,∴54=5b+1.5,
∴b=10.5,
∴回归直线方程为
y
=10.5x+1.5,
当x=20时,
y
=10.5×20+1.5=211.5,
故选:D.
点评:本题考查线性回归方程,解题的关键是线性回归直线一定过样本中心点,这是求解线性回归方程的步骤之一.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网