题目内容

已知
a
=(cosα,sinα),
b
=(cosβ,sinβ)且α-β∈(-
π
2
,0),
(Ⅰ)若
a
b
=
3
2
,求α-β的值;
(Ⅱ)若|
a
-
b
|=
10
5
且α=
π
3
,求sinβ的值.
考点:平面向量数量积的运算
专题:三角函数的求值,平面向量及应用
分析:(Ⅰ)由
a
b
=cosαcosβ+sinαsinβ=cos(α-β)=
3
2
,且α-β∈(-
π
2
,0),求出α-β的值;
(Ⅱ)由|
a
-
b
|=
10
5
,|
a
|=|
b
|=1,求出cos(α-β),sin(α-β)的值;又α=
π
3
,得出sinβ的值.
解答: 解:(Ⅰ)∵
a
=(cosα,sinα),
b
=(cosβ,sinβ),
a
b
=cosαcosβ+sinαsinβ=cos(α-β)=
3
2

∵α-β∈(-
π
2
,0),
∴α-β=-
π
6

(Ⅱ)∵|
a
-
b
|=
10
5
,|
a
|=|
b
|=1,
|
a
-
b
|
2
=2-2
a
b
=(
10
5
)
2
=
2
5

a
b
=
4
5
=cos(α-β),
∴sin(α-β)=-
3
5

∵α=
π
3

∴cos(
π
3
-β)=
4
5
,sin(
π
3
-β)=-
3
5

∴sinβ=sin[
π
3
-(
π
3
-β)]=
3
2
×
4
5
-
1
2
×(-
3
5
)=
3+4
3
10
点评:本题考查了平面向量的应用以及三角函数求值的问题,解题时应熟练地应用平面向量的运算法则和三角函数的公式化简、求值,是综合题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网