题目内容
已知数列{an}满足a1=1,
=n,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=
,数列{bn}的前n项和为Tn,求Tn.
(3)证明:a12+a22+a32+…+an2<2.
| an-an+1 |
| an+1 |
(1)求数列{an}的通项公式;
(2)设bn=
| 2n |
| an |
(3)证明:a12+a22+a32+…+an2<2.
考点:数列与不等式的综合,数列的求和,数列递推式
专题:综合题,等差数列与等比数列
分析:(1)把给出的递推式变形,得到
=
,然后利用累积法求数列的通项公式;
(2)把(1)中求出的通项公式代入bn=
,整理后利用错位相减法求数列的前n项和;
(3)把
放大后利用裂项相消法求和,则不等式得证.
| an+1 |
| an |
| n |
| n+1 |
(2)把(1)中求出的通项公式代入bn=
| 2n |
| an |
(3)把
| 1 |
| an2 |
解答:
(1)解:由
=n,得(n+1)an+1=nan,即
=
,
∴
•
•
…
•
=
×
×
×…×
×
,
即an=
a1,
∵a1=1,
an=
;
(2)解:∵an=
,
∴bn=
=n•2n,
∴Tn=1×2+2×22+3×22+…+n•2n ①
2Tn=1×22+2×23+3×24+…+(n-1)•2n+n•2n+1 ②
①-②得-Tn=2+22+23+…+2n-n•2n+1,
∴Tn=(n-1)•2n+1+2;
(3)证明:∵
<
=
-
,k=2,3,4…,n.
∴a
+
+
+…+a
=
+
+
+…+
<
+
+
+…+
=1+(1-
)+(
-
)+…+(
-
)
=2-
<2.
| an-an+1 |
| an+1 |
| an+1 |
| an |
| n |
| n+1 |
∴
| a2 |
| a1 |
| a3 |
| a2 |
| a4 |
| a3 |
| an-1 |
| an-2 |
| an |
| an-1 |
| 1 |
| 2 |
| 2 |
| 3 |
| 3 |
| 4 |
| n-2 |
| n-1 |
| n-1 |
| n |
即an=
| 1 |
| n |
∵a1=1,
an=
| 1 |
| n |
(2)解:∵an=
| 1 |
| n |
∴bn=
| 2n |
| an |
∴Tn=1×2+2×22+3×22+…+n•2n ①
2Tn=1×22+2×23+3×24+…+(n-1)•2n+n•2n+1 ②
①-②得-Tn=2+22+23+…+2n-n•2n+1,
∴Tn=(n-1)•2n+1+2;
(3)证明:∵
| 1 |
| k2 |
| 1 |
| k(k-1) |
| 1 |
| k-1 |
| 1 |
| k |
∴a
2 1 |
| a | 2 2 |
| a | 2 3 |
2 n |
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
<
| 1 |
| 1 |
| 1 |
| 1•2 |
| 1 |
| 2•3 |
| 1 |
| (n-1)•n |
=1+(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
=2-
| 1 |
| n |
点评:本题考查了数列递推式,考查了累积法求数列的通项公式,考查了错位相减法求数列的前n项和,训练了放缩法证明数列不等式,是中档题.
练习册系列答案
相关题目