题目内容
若数列{an}前n项的和Sn=n2-4n+1(n∈N+)则{an}的通项公式an= .
考点:数列的函数特性
专题:等差数列与等比数列
分析:利用“当n=1时,a1=S1.当n≥2时,an=Sn-Sn-1”即可得出.
解答:
解:当n=1时,a1=S1=1-4+1=-2.
当n≥2时,an=Sn-Sn-1=n2-4n+1-[(n-1)2-4(n-1)+1]
=2n-5,
∴an=
.
故答案为:
.
当n≥2时,an=Sn-Sn-1=n2-4n+1-[(n-1)2-4(n-1)+1]
=2n-5,
∴an=
|
故答案为:
|
点评:本题考查了利用“当n=1时,a1=S1.当n≥2时,an=Sn-Sn-1”求数列的通项公式,属于基础题.
练习册系列答案
相关题目
已知等差数列{an}的公差为2,若a1,a3,a4成等比数列,则a7等于( )
| A、4 | B、6 | C、8 | D、10 |