ÌâÄ¿ÄÚÈÝ
4£®ÒÔÆ½ÃæÖ±½Ç×ø±êϵµÄÔµãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬Á½ÖÖ×ø±êϵÖÐÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=cos¦Á\\ y=sin¦Á\end{array}\right.$£¬£¨¦ÁΪ²ÎÊý£¬ÇÒ¦Á¡Ê[0£¬¦Ð£©£©£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=-2sin¦È£®£¨1£©ÇóC1µÄ¼«×ø±ê·½³ÌÓëC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©£©ÈôPÊÇC1ÉÏÈÎÒâÒ»µã£¬¹ýµãPµÄÖ±Ïßl½»C2ÓÚµãM£¬N£¬Çó|PM|•|PN|µÄȡֵ·¶Î§£®
·ÖÎö £¨1£©Çó³öC1µÄÆÕͨ·½³Ì£¬¼´¿ÉÇóC1µÄ¼«×ø±ê·½³Ì£¬ÀûÓü«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯·½·¨µÃ³öC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}{x={x}_{0}+tcos¦Á}\\{y={y}_{0}+tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£©£¬´úÈëC2µÄÖ±½Ç×ø±ê·½³ÌµÃ£¨x0+tcos¦Á£©2+£¨y0+tsin¦Á+1£©2=1£¬ÓÉÖ±Ïß²ÎÊý·½³ÌÖÐtµÄ¼¸ºÎÒâÒå¿ÉÖª|PM|•|PN|=|1+2y0|£¬¼´¿ÉÇó|PM|•|PN|µÄȡֵ·¶Î§£®
½â´ð ½â£º£¨1£©ÏûÈ¥²ÎÊý¿ÉµÃx2+y2=1£¬ÒòΪ¦Á¡Ê[0£¬¦Ð£©£¬ËùÒÔ-1¡Üx¡Ü1£¬0¡Üy¡Ü1£¬
ËùÒÔÇúÏßC1ÊÇx2+y2=1ÔÚxÖáÉÏ·½µÄ²¿·Ö£¬
ËùÒÔÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñ=1£¨0¡Ü¦È¡Ü¦Ð£©£®¡£¨2·Ö£©
ÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪx2+£¨y+1£©2=1¡£¨5·Ö£©
£¨2£©ÉèP£¨x0£¬y0£©£¬Ôò0¡Üy0¡Ü1£¬Ö±ÏßlµÄÇãб½ÇΪ¦Á£¬
ÔòÖ±ÏßlµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}{x={x}_{0}+tcos¦Á}\\{y={y}_{0}+tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£©£®¡£¨7·Ö£©
´úÈëC2µÄÖ±½Ç×ø±ê·½³ÌµÃ£¨x0+tcos¦Á£©2+£¨y0+tsin¦Á+1£©2=1£¬
ÓÉÖ±Ïß²ÎÊý·½³ÌÖÐtµÄ¼¸ºÎÒâÒå¿ÉÖª|PM|•|PN|=|1+2y0|£¬
ÒòΪ0¡Üy0¡Ü1£¬ËùÒÔ|PM|•|PN|=¡Ê[1£¬3]¡£¨10·Ö£©
µãÆÀ ±¾Ì⿼²éÈýÖÖ·½³ÌµÄ»¥»¯£¬¿¼²é²ÎÊý·½³ÌµÄÔËÓ㬿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | S5 | B£® | S6 | C£® | S7 | D£® | S8 |
| A£® | {0} | B£® | {2} | C£® | {2£¬4} | D£® | {0£¬1£¬2} |
| A£® | $\frac{1}{16}$ | B£® | $\frac{{\root{3}{4}}}{4}$ | C£® | $\frac{1}{4}$ | D£® | $\frac{{\root{3}{4}}}{8}$ |