题目内容

13.若数列{an}的首项a1=2,且${a_{n+1}}=3{a_n}+2({n∈{N^*}})$;令bn=log3(an+1),则b1+b2+b3+…+b100=5050.

分析 推导出{an+1}是首项为3,公比为3的等比数列,从而得bn=$lo{g}_{3}{3}^{n}$=n,由此能求出b1+b2+b3+…+b100

解答 解:∵数列{an}的首项a1=2,且${a_{n+1}}=3{a_n}+2({n∈{N^*}})$,
∴an+1+1=3(an+1),a1+1=3,
∴{an+1}是首项为3,公比为3的等比数列,
∴${a}_{n}+1={3}^{n}$,
∴bn=log3(an+1)=$lo{g}_{3}{3}^{n}$=n,
∴b1+b2+b3+…+b100=1+2+3+…+100=$\frac{100(100+1)}{2}$=5050.
故答案为:5050.

点评 本题考查数列的前100项和的求法,是中档题,解题时要认真审题,注意等比数列、等差数列的性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网