题目内容
15.已知曲线C1的参数方程为$\left\{\begin{array}{l}x=2+\frac{1}{3}t\\ y=\frac{{2\sqrt{2}}}{3}t\end{array}\right.$(t为参数),在以O为极点,以x轴为极轴的极坐标系中,曲线C2的极坐标方程为ρ=4cosθ,曲线C1与C2交于两点P,Q,(Ⅰ)求曲线C2的直角坐标方程.
(Ⅱ)求|PQ|的值.
分析 (Ⅰ)先将原极坐标方程ρ=4cosθ两边同乘以ρ后利用直角坐标与极坐标间的关系化成直角坐标方程即得;
(Ⅱ)曲线C1的参数方程为$\left\{\begin{array}{l}x=2+\frac{1}{3}t\\ y=\frac{{2\sqrt{2}}}{3}t\end{array}\right.$(t为参数),普通方程为4x-$\sqrt{2}$y-8=0,圆心在直线4x-$\sqrt{2}$y-8=0上,即可求|PQ|的值.
解答 解:(Ⅰ)将原极坐标方程ρ=4cosθ,化为:ρ2=4ρcosθ,
化成直角坐标方程为:x2+y2=4x;
(Ⅱ)曲线C1的参数方程为$\left\{\begin{array}{l}x=2+\frac{1}{3}t\\ y=\frac{{2\sqrt{2}}}{3}t\end{array}\right.$(t为参数),普通方程为4x-$\sqrt{2}$y-8=0
x2+y2=4x的圆心坐标为(2,0),半径为2,圆心在直线4x-$\sqrt{2}$y-8=0上,
∴|PQ|=4.
点评 本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.
练习册系列答案
相关题目
6.函数f(x)=3sin(x+$\frac{π}{6}$)在x=θ时取得最大值,则tanθ等于( )
| A. | -$\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | -$\sqrt{3}$ | D. | $\sqrt{3}$ |
3.已知集合A={-3,-2,-1,0,1,2},B={x|-2≤x<3},则A∩B=( )
| A. | {-2,-1,0} | B. | {-2,-1,0,1} | C. | {-2,-1,0,1,2} | D. | {-2,-1,0,1,2,3} |
10.直线x+y-2=0与坐标轴围成的三角形的面积为( )
| A. | 1 | B. | 2 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
20.直线$\left\{\begin{array}{l}x=1+\frac{4}{5}t\\ y=-1+\frac{3}{5}t\end{array}\right.$(t为参数)被曲线ρ=$\sqrt{2}$cos(θ+$\frac{π}{4}$)所截的弦长为( )
| A. | $\frac{1}{5}$ | B. | $\frac{7}{10}$ | C. | $\frac{7}{5}$ | D. | $\frac{5}{7}$ |
4.如图,函数y=f(x)的图象,则该函数在x=1的瞬时变化率大约是( )
| A. | 0.2 | B. | 0.3 | C. | 0.4 | D. | 0.5 |
5.下列变形错误的是( )
| A. | cos4θ-sin4θ=cos2θ | |
| B. | $\frac{1}{1-tanθ}-\frac{1}{1+tanθ}=tan2θ$ | |
| C. | $\frac{1-2sinαcosα}{{{{cos}^2}α-{{sin}^2}α}}=\frac{1-tanα}{1+tanα}$ | |
| D. | $sinα•cosβ=\frac{1}{2}[sin(α+β)-sin(α-β)]$ |