题目内容
8.已知椭圆$\frac{x^2}{m+1}+{y^2}=1(m>0)$的两个焦点是F1,F2,E是直线y=x+2与椭圆的一个公共点,当|EF1|+|EF2|取得最小值时椭圆的离心率为( )| A. | $\frac{2}{3}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{2}}}{3}$ | D. | $\frac{{\sqrt{6}}}{3}$ |
分析 由题意得(m+2)x2+4(m+1)x+3(m+1)=0.由△≥0,得m≥2.|EF1|+|EF2|取得最小值,求出m.由此能求出椭圆离心率.
解答 解:由题意,m>0知m+1>1,
由$\left\{\begin{array}{l}{y=x+2}\\{\frac{{x}^{2}}{m+1}+{y}^{2}=1}\end{array}\right.$得(m+2)x2+4(m+1)x+3(m+1)=0.
由△=16(m+1)2-12(m+2)(m+1)=4(m+1)(m-2)≥0,
解得m≥2,或m≤-1(舍去)∴m≥2,
当且仅当m=2时,|EF1|+|EF2|取得最小值:2$\sqrt{3}$.
此时a=$\sqrt{3}$,c=$\sqrt{2}$,
e=$\frac{\sqrt{6}}{3}$.
故选:D.
点评 本题考查椭圆性质的应用,注意合理地进行等价转化.
练习册系列答案
相关题目
18.函数f(x)=x3-3x(-1<x<1)( )
| A. | 有最大值,但无最小值 | B. | 有最大值,也有最小值 | ||
| C. | 无最大值,也无最小值 | D. | 无最大值,但有最小值 |
16.cos(-120o)=( )
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
13.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如表:
(1)求y关于t的线性回归方程;
(2)用所求回归方程预测该地区2016年的人民币储蓄存款.
| 年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
| 时间代号t | 1 | 2 | 3 | 4 | 5 |
| 储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
(2)用所求回归方程预测该地区2016年的人民币储蓄存款.