题目内容
已知函数f(x)=x3-3x+c的图象与x轴恰好有三个不同的公共点,则实数c的取值范围是( )
| A、(-1,1) |
| B、[-1,1] |
| C、(-2,2) |
| D、[-2,2] |
考点:利用导数研究函数的极值
专题:计算题,导数的综合应用
分析:由题意,根据根的存在性定理知,只需使函数f(x)的极大值与极小值符号相反即可.
解答:
解:令f′(x)=3x2-3=0解得,
x=1或x=-1,
∵函数f(x)=x3-3x+c的图象与x轴恰好有三个不同的公共点,
∴f(1)f(-1)<0,
即(c-2)(c+2)<0,
则-2<c<2.
故选C.
x=1或x=-1,
∵函数f(x)=x3-3x+c的图象与x轴恰好有三个不同的公共点,
∴f(1)f(-1)<0,
即(c-2)(c+2)<0,
则-2<c<2.
故选C.
点评:本题考查了函数的图象与性质,利用导数求极值及根的存在性定理.
练习册系列答案
相关题目
已知集合M={1,2,3,5},N={x|x=2k-1,k∈M},则M∩N=( )
| A、{1,2,3} |
| B、{1,3,5} |
| C、{2,3,5} |
| D、{1,3,4,5,7} |
已知函数y=2sin(ωx+φ)(0<φ<π)为偶函数,其图象与直线y=2某两个公共点的横坐标为x1,x2,若|x1-x2|的最小值为π,则该函数的一个递增区间可以是( )
A、(-
| ||||
B、(-
| ||||
C、(0,
| ||||
D、(
|
已知{an}是等比数列,a1=2,a4=
,则公比q=( )
| 1 |
| 4 |
A、-
| ||
| B、-2 | ||
| C、2 | ||
D、
|
已知数列{an}的首项a1=1,an+1=3Sn(n≥1),则下列结论正确的是( )
| A、数列{an}是等比数列 |
| B、数列a2,a3,…,an是等比数列 |
| C、数列{an}是等差数列 |
| D、数列a2,a3,…,an是等差数列 |
已知A,B是相互独立事件,若P(A)=0.2,P(AB+
B+A
)=0.44,则P(B)=( )
. |
| A |
. |
| B |
| A、0.3 | B、0.4 |
| C、0.5 | D、0.6 |