题目内容

已知数列{an}满足a1=1,an=a1+2a2+3a3+…+(n-1)an-1(n≥2),求数列{an}的通项公式.(可能用到的结论:1×2×3×4×…×n=n!)
考点:数列递推式
专题:等差数列与等比数列
分析:由an=a1+2a2+3a3+…+(n-1)an-1(n≥2),an+1=a1+2a2+3a3+…+nan,可得an+1=(n+1)an.当n=2时,a2=a1=1.当n≥2时,利用“累乘求积”即可得出.
解答: 解:∵an=a1+2a2+3a3+…+(n-1)an-1(n≥2),
∴an+1=a1+2a2+3a3+…+nan
∴an+1-an=nan
∴an+1=(n+1)an
当n=2时,a2=a1=1.
∴当n≥2时,
an=
an
an-1
an-1
an-2
•…•
a3
a2
•a2=n×(n-1)×…×3×1=
1
2
×n!

an=
1,n=1
1
2
n!,n≥2
点评:本题考查了递推式的应用、“累乘求积”、分类讨论方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网