题目内容
若以连续掷两次骰子分别得到的点数m、n作为点P的坐标(m,n),求:
(1)点P在直线x+y=7上的概率;
(2)点P在圆x2+y2=25外的概率.
(1)点P在直线x+y=7上的概率;
(2)点P在圆x2+y2=25外的概率.
考点:古典概型及其概率计算公式
专题:概率与统计
分析:(1)列格可知,所有的点P坐标(m,n)共计36个,其中满足x+y=7的有6个,由此求得P点在直线x+y=7上的概率.
(2)用列举法求得在圆x2+y2=25内的点P13个,在圆上的点P有2个,可得共有15个点在圆内或圆外,用1减去点在圆内或圆上的概率,即得所求.
(2)用列举法求得在圆x2+y2=25内的点P13个,在圆上的点P有2个,可得共有15个点在圆内或圆外,用1减去点在圆内或圆上的概率,即得所求.
解答:
解:(1)列表如图;
由上表格可知,所有的点P坐标(m,n)共计36个,其中满足x+y=7的有6个,
所以P点在直线x+y=7上的概率为
=
.
(2)在圆x2+y2=25内的点P有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),
(2,3),(2,4)(3,1),(3,2),(3,3),(4,1),(4,2),共计13个,
在圆上的点P有(3,4),(4,3),共计2个,
上述共有15个点在圆内或圆上,可得点P在圆x2+y2=25外的概率为 1-
=
.
| 1 | 2 | 3 | 4 | 5 | 6 | |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 6 | 7 | 8 | 9 | 10 | 11 | 12 |
所以P点在直线x+y=7上的概率为
| 6 |
| 36 |
| 1 |
| 6 |
(2)在圆x2+y2=25内的点P有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),
(2,3),(2,4)(3,1),(3,2),(3,3),(4,1),(4,2),共计13个,
在圆上的点P有(3,4),(4,3),共计2个,
上述共有15个点在圆内或圆上,可得点P在圆x2+y2=25外的概率为 1-
| 15 |
| 36 |
| 7 |
| 12 |
点评:本题主要考查古典概型及其概率计算公式的应用,事件和它的对立事件概率之间的关系,举法,是解决古典概型问题的一种重要的解题方法,属于基础题.
练习册系列答案
相关题目