题目内容
17.| A. | $\frac{\sqrt{10}}{2}$ | B. | $\sqrt{10}$ | C. | $\frac{3}{2}$ | D. | 3 |
分析 利用双曲线的定义,推出a、b、c关系,然后求解双曲线的离心率即可.
解答 解:设双曲线的左焦点为F1,则四边形F1BFA是矩形,由|AF|=a,|AF1|-|AF|=2a,
可得|AF1|=3a.又|AF|=|BF1|=a,
在直角三角形BF1F中,(3a)2+a2=4c2,解得e=$\frac{\sqrt{10}}{2}$.
故选:A.
点评 本题考查双曲线的简单性质的应用,考查分析问题解决问题的能力.
练习册系列答案
相关题目
5.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\sqrt{2}$,则直线l:y=$\frac{2016}{2015}$x与双曲线C的交点个数为( )
| A. | 0 | B. | 2 | C. | 4 | D. | 以上都可能 |
12.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一条渐近线方程为y=$\frac{\sqrt{7}}{3}$x,它的一个顶点到较近焦点的距离为1,则双曲线方程为( )
| A. | $\frac{{x}^{2}}{7}$-$\frac{{y}^{2}}{9}$=1 | B. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1 | C. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{7}$=1 | D. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1 |
9.已知点P在双曲线$\frac{x^2}{a^2}-\frac{y^2}{16}$=1的右支上,F为双曲线的左焦点,Q为线段PF的中点,O为坐标原点.若|OQ|的最小值为1,则双曲线的离心率为( )
| A. | $\frac{17}{15}$ | B. | $\frac{15}{17}$ | C. | $\frac{3}{5}$ | D. | $\frac{5}{3}$ |
6.一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为( )
| A. | 20π | B. | $\frac{{20\sqrt{5}π}}{3}$ | C. | 5π | D. | $\frac{{5\sqrt{5}π}}{6}$ |