题目内容
19.在△ABC中,已知4sin2$\frac{B+C}{2}$-cos2A=$\frac{7}{2}$.求:(1)角A的大小;
(2)函数y=cos2B+cos2C的值域.
分析 (1)由题意和三角函数公式可得cosA的方程,解得cosA=$\frac{1}{2}$,可得A=$\frac{π}{3}$;
(2)由三角形内角和可得C=$\frac{2π}{3}$-B,∴B∈(0,$\frac{2π}{3}$),代入化简可得y=$\frac{1}{2}$cos(2B+$\frac{π}{3}$)+1,由B的范围和三角函数值域可得.
解答 解:(1)∵在△ABC中4sin2$\frac{B+C}{2}$-cos2A=$\frac{7}{2}$,
∴4•$\frac{1-cos(B+C)}{2}$-(2cos2A-1)=$\frac{7}{2}$,
∴2(1+cosA)-2cos2A+1=$\frac{7}{2}$,
解得cosA=$\frac{1}{2}$,A=$\frac{π}{3}$;
(2)∵A=$\frac{π}{3}$,∴C=$\frac{2π}{3}$-B,∴B∈(0,$\frac{2π}{3}$),
∴y=cos2B+cos2($\frac{2π}{3}$-B)
=cos2B+(-$\frac{1}{2}$cosB+$\frac{\sqrt{3}}{2}$sinB)2
=cos2B+$\frac{1}{4}$cos2B+$\frac{3}{4}$sin2B-$\frac{\sqrt{3}}{2}$sinBcosB,
=$\frac{1}{2}$cos2B+$\frac{3}{4}$-$\frac{\sqrt{3}}{2}$sinBcosB,
=$\frac{1}{2}$•$\frac{1+cos2B}{2}$+$\frac{3}{4}$-$\frac{\sqrt{3}}{4}$sin2B
=$\frac{1}{4}$cos2B-$\frac{\sqrt{3}}{4}$sin2B+1
=$\frac{1}{2}$cos(2B+$\frac{π}{3}$)+1,
∵B∈(0,$\frac{2π}{3}$),∴2B+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{5π}{3}$),
∴cos(2B+$\frac{π}{3}$)∈[-1,$\frac{1}{2}$),
∴$\frac{1}{2}$cos(2B+$\frac{π}{3}$)∈[-$\frac{1}{2}$,$\frac{1}{4}$),
∴$\frac{1}{2}$cos(2B+$\frac{π}{3}$)+1∈[$\frac{1}{2}$,$\frac{5}{4}$),
∴函数y=cos2B+cos2C的值域为:∈[$\frac{1}{2}$,$\frac{5}{4}$)
点评 本题考查三角函数恒等变换,涉及三角函数公式的综合应用和三角函数的值域,属中档题.
| A. | -$\frac{1}{12}$ | B. | -$\frac{1}{4}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |