题目内容
10.已知双曲线C:$\frac{x^2}{16}-\frac{y^2}{b^2}=1({b>0})$的右焦点与抛物线y2=20x的焦点重合,则双曲线C的渐近线方程为( )| A. | 4x±3y=0 | B. | 3x±4y=0 | C. | 16x±9y=0 | D. | 9x±16y=0 |
分析 求出抛物线的焦点,确定双曲线的c,建立方程求出b的值进行求解即可.
解答 解:抛物线的焦点坐标为(5,0),
即双曲线的右焦点为(5,0),
即c=5,则c2=16+b2=25,
即b2=9,
则b=3,
即双曲线的渐近线方程为y=±$\frac{b}{a}$x=±$\frac{3}{4}$x,
即3x±4y=0,
故选:B
点评 本题考查双曲线的渐近线的求法,注意运用双曲线方程和渐近线的方程的关系,考查运算能力,属于基础题.
练习册系列答案
相关题目
20.F为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的右焦点,点P在双曲线右支上,△POF(O为坐标原点)满足OF=OP=5,$P{F_{\;}}=2\sqrt{5}$,则双曲线的离心率为 ( )
| A. | $\sqrt{3}+1$ | B. | $\sqrt{5}$ | C. | 2 | D. | $\sqrt{3}$ |
1.已知函数f(x)=xsinx+cosx+x2,则不等式$f(lnx)+f(ln\frac{1}{x})<2f(1)$的解集为( )
| A. | (e,+∞) | B. | (0,e) | C. | $(0,\frac{1}{e})∪(1,e)$ | D. | $(\frac{1}{e},e)$ |
5.已知函数f(x)=$\frac{x}{cosx}$的定义域为(-$\frac{π}{2}$,$\frac{π}{2}$),当|xi|<$\frac{π}{2}$时(i=1,2,3),f(x1)+f(x2)≥0,f(x2)+f(x3)≥0,f(x3)+f(x1)≥0,则下列结论正确的是( )
| A. | x1+x2+x3>0 | B. | x1+x2+x3<0 | C. | f(x1+x2+x3)≥0 | D. | f(x1+x2+x3)≤0 |
2.某市交管部门随机抽取了89位司机调查有无酒驾习惯,汇总数据的如表:
已知在这89人随机抽取1人,抽到无酒驾习惯的概率为$\frac{57}{89}$,
(1)将如表中空白部分数据补充完整;
(2)若从有酒驾习惯的人中按性别用分层抽样的方法抽取8人参加某项活动,现从这8人中随机抽取2人,记抽到女性的人数为X,求X得分布列和数学期望.
| 男性 | 女性 | 合计 | |
| 无酒驾习惯 | 31 | ||
| 有酒驾习惯 | 8 | ||
| 合计 | 89 |
(1)将如表中空白部分数据补充完整;
(2)若从有酒驾习惯的人中按性别用分层抽样的方法抽取8人参加某项活动,现从这8人中随机抽取2人,记抽到女性的人数为X,求X得分布列和数学期望.
19.若抛物线y2=2px(p>0)的焦点为F,点A(3,2)在抛物线开口内,点P为抛物线上一点,当△APF的周长最小时,△APF的面积为1,则|PF|=( )
| A. | 1 | B. | $\frac{3}{2}$ | C. | 2 | D. | $\frac{5}{2}$ |
20.下列叙述中正确的是( )
| A. | 若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2-4ac≤0” | |
| B. | 若a,b,c∈R,则“ab2>cb2”的充要条件是“a>c” | |
| C. | “直线a∥b”是“直线a⊥平面α,直线b⊥平面α”的必要条件 | |
| D. | b2=ac是a,b,c成等比数列的充要条件 |