题目内容
3.已知sin2a=2-2cos2a,则tana=0或$\frac{1}{2}$.分析 利用二倍角的余弦公式,同角三角的基本关系,求得tana的值.
解答 解:∵已知sin2a=2-2cos2a=2-2(1-2sin2a)=4sin2a,∴2sinacosa=4sin2a,
∴sina=0,或cosa=2sina,即tana=0,或tana=$\frac{1}{2}$,
故答案为:0或$\frac{1}{2}$.
点评 本题主要考查二倍角的余弦公式、同角三角的基本关系,属于基础题.
练习册系列答案
相关题目
13.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=7,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
18.若实数x,y满足约束条件$\left\{\begin{array}{l}x-1≥0\\ x-y≤0\\ x+y-6≤0\end{array}\right.$,则x-2y的最大值为( )
| A. | -9 | B. | -3 | C. | -1 | D. | 3 |
15.设函数f(x)=$\left\{\begin{array}{l}{a{x}^{2}+x,x≥0}\\{-a{x}^{2}+x,x<0}\end{array}\right.$当x∈[-$\frac{1}{2}$,$\frac{1}{2}$]时,恒有f(x+a)<f(x),则实数a的取值范围是( )
| A. | ($\frac{1-\sqrt{5}}{2}$,$\frac{1+\sqrt{5}}{2}$) | B. | (-1,$\frac{1+\sqrt{5}}{2}$) | C. | ($\frac{1-\sqrt{5}}{2}$,0) | D. | ($\frac{1-\sqrt{5}}{2}$,-$\frac{1}{2}$] |
12.甲、乙两人做石头、剪刀、布(石头-剪刀,石头赢;剪刀-布,剪刀赢;布-石头,布赢;两人出拳一样为平局)的猜拳游戏,则甲不赢的概率为( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |