ÌâÄ¿ÄÚÈÝ
14£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{2sin2¦Ðx£¬x¡Ê[1£¬3]}\\{£¨x-2£©^{3}-x+2£¬x¡Ê£¨-¡Þ£¬1£©¡È£¨3£¬+¡Þ£©}\end{array}\right.$£¬Èô´æÔÚx1¡¢x2¡¢¡xnÂú×ã$\frac{f£¨{x}_{1}£©}{{x}_{1}-2}$=$\frac{f£¨{x}_{2}£©}{{x}_{2}-2}$=¡=$\frac{f£¨{x}_{n}£©}{{x}_{n}-2}$=$\frac{1}{2}$£¬Ôòx1+x2+¡+xnµÄֵΪ£¨¡¡¡¡£©| A£® | 4 | B£® | 6 | C£® | 8 | D£® | 10 |
·ÖÎö ÓÉÌâÒ⺯Êýf£¨x£©µÄͼÏó¹ØÓڵ㣨2£¬0£©¶Ô³Æ£¬º¯Êýf£¨x£©Óëy=$\frac{1}{2}x-1$µÄͼÏóÇ¡Óиö½»µã£¬ÇÒÕâ¸ö½»µã¹ØÓÚ£¨2£¬0£©¶Ô³Æ£¬ÓÉ´ËÄÜÇó³öx1+x2+¡+xnµÄÖµ£®
½â´ð ½â£º¡ßº¯Êýf£¨x£©=$\left\{\begin{array}{l}{2sin2¦Ðx£¬x¡Ê[1£¬3]}\\{£¨x-2£©^{3}-x+2£¬x¡Ê£¨-¡Þ£¬1£©¡È£¨3£¬+¡Þ£©}\end{array}\right.$£¬![]()
¡àº¯Êýf£¨x£©µÄͼÏó¹ØÓڵ㣨2£¬0£©¶Ô³Æ£¬
½áºÏͼÏóÖª£ºx1¡¢x2¡¢¡xnÂú×ã$\frac{f£¨{x}_{1}£©}{{x}_{1}-2}$=$\frac{f£¨{x}_{2}£©}{{x}_{2}-2}$=¡=$\frac{f£¨{x}_{n}£©}{{x}_{n}-2}$=$\frac{1}{2}$£¬
¡àº¯Êýf£¨x£©Óëy=$\frac{1}{2}x-1$µÄͼÏóÇ¡Óиö½»µã£¬ÇÒÕâ¸ö½»µã¹ØÓÚ£¨2£¬0£©¶Ô³Æ£¬
³ýÈ¥µã£¨2£¬0£©£¬
¹ÊÓÐx1+x2+¡+xn=x1+x2+x3+x4=8£®
¹ÊÑ¡£ºC£®
µãÆÀ ±¾Ì⿼²éº¯ÊýÖµµÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒ⺯ÊýÐÔÖʵĺÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
9£®ÉèÃüÌâp£º?x0¡Ê£¨0£¬+¡Þ£©£¬x0+$\frac{1}{{x}_{0}}$£¾3£»ÃüÌâq£º?x¡Ê£¨2£¬+¡Þ£©£¬x2£¾2x£¬ÔòÏÂÁÐÃüÌâÎªÕæµÄÊÇ£¨¡¡¡¡£©
| A£® | p¡Ä£¨©Vq£© | B£® | £¨©Vp£©¡Äq | C£® | p¡Äq | D£® | £¨©Vp£©¡Åq |
6£®Éè²»µÈʽ×é$\left\{\begin{array}{l}3x+y-10¡Ý0\\ x+3y-6¡Ü0\end{array}\right.$±íʾµÄÆ½ÃæÇøÓòΪD£¬Èôº¯Êýy=logax£¨a£¾1£©µÄͼÏóÉÏ´æÔÚÇøÓòDÉϵĵ㣬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | £¨1£¬3] | B£® | [3£¬+¡Þ£© | C£® | £¨1£¬2] | D£® | [2£¬+¡Þ£© |