ÌâÄ¿ÄÚÈÝ

14£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{2sin2¦Ðx£¬x¡Ê[1£¬3]}\\{£¨x-2£©^{3}-x+2£¬x¡Ê£¨-¡Þ£¬1£©¡È£¨3£¬+¡Þ£©}\end{array}\right.$£¬Èô´æÔÚx1¡¢x2¡¢¡­xnÂú×ã$\frac{f£¨{x}_{1}£©}{{x}_{1}-2}$=$\frac{f£¨{x}_{2}£©}{{x}_{2}-2}$=¡­=$\frac{f£¨{x}_{n}£©}{{x}_{n}-2}$=$\frac{1}{2}$£¬Ôòx1+x2+¡­+xnµÄֵΪ£¨¡¡¡¡£©
A£®4B£®6C£®8D£®10

·ÖÎö ÓÉÌâÒ⺯Êýf£¨x£©µÄͼÏó¹ØÓڵ㣨2£¬0£©¶Ô³Æ£¬º¯Êýf£¨x£©Óëy=$\frac{1}{2}x-1$µÄͼÏóÇ¡Óиö½»µã£¬ÇÒÕâ¸ö½»µã¹ØÓÚ£¨2£¬0£©¶Ô³Æ£¬ÓÉ´ËÄÜÇó³öx1+x2+¡­+xnµÄÖµ£®

½â´ð ½â£º¡ßº¯Êýf£¨x£©=$\left\{\begin{array}{l}{2sin2¦Ðx£¬x¡Ê[1£¬3]}\\{£¨x-2£©^{3}-x+2£¬x¡Ê£¨-¡Þ£¬1£©¡È£¨3£¬+¡Þ£©}\end{array}\right.$£¬
¡àº¯Êýf£¨x£©µÄͼÏó¹ØÓڵ㣨2£¬0£©¶Ô³Æ£¬
½áºÏͼÏóÖª£ºx1¡¢x2¡¢¡­xnÂú×ã$\frac{f£¨{x}_{1}£©}{{x}_{1}-2}$=$\frac{f£¨{x}_{2}£©}{{x}_{2}-2}$=¡­=$\frac{f£¨{x}_{n}£©}{{x}_{n}-2}$=$\frac{1}{2}$£¬
¡àº¯Êýf£¨x£©Óëy=$\frac{1}{2}x-1$µÄͼÏóÇ¡Óиö½»µã£¬ÇÒÕâ¸ö½»µã¹ØÓÚ£¨2£¬0£©¶Ô³Æ£¬
³ýÈ¥µã£¨2£¬0£©£¬
¹ÊÓÐx1+x2+¡­+xn=x1+x2+x3+x4=8£®
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²éº¯ÊýÖµµÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒ⺯ÊýÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø