题目内容
已知函数f(x)满足条件f(x+y)=f(x)+f(y)+xy,x,y∈N*,又f(1)=1,求f(x).
考点:函数解析式的求解及常用方法
专题:函数的性质及应用
分析:先令y=1,得到f(x+1)-f(x)=1+x,再分别取x=1,2,3,…x,利用累加法求出f(x)
解答:
解:∵f(x+y)=f(x)+f(y)+xy,x,y∈N*,f(1)=1
令y=1,
∴f(x+1)=f(x)+f(1)+x=f(x)+1+x,
即f(x+1)-f(x)=1+x,
当x=1时,f(2)-f(1)=1+1=2,
当x=2时,f(3)-f(2)=1+2=3,
当x=3时,f(4)-f(3)=1+3=4,
…
当x=x-1时,f(x)-f(x-1)=1+x-1=x,
左边相加,右边相加得,
f(x)-f(1)=2+3+…x,
∴f(x)=1+2+3+…x=
.
令y=1,
∴f(x+1)=f(x)+f(1)+x=f(x)+1+x,
即f(x+1)-f(x)=1+x,
当x=1时,f(2)-f(1)=1+1=2,
当x=2时,f(3)-f(2)=1+2=3,
当x=3时,f(4)-f(3)=1+3=4,
…
当x=x-1时,f(x)-f(x-1)=1+x-1=x,
左边相加,右边相加得,
f(x)-f(1)=2+3+…x,
∴f(x)=1+2+3+…x=
| x(x+1) |
| 2 |
点评:本题主要考查了函数解析式的求法,利用赋值法和累加法,培养了学生的转化能力和抽象思维能力,属于中档题.
练习册系列答案
相关题目
四边形ABCD是圆内接四边形,∠A,∠B,∠C的度数之比为2:3:6,则∠D的度数为( )
| A、45° | B、67.5° |
| C、112.5° | D、135° |
矩阵
的逆矩阵是( )
|
A、
| |||||||
B、
| |||||||
C、
| |||||||
D、
|
大可以商场在春节举行抽奖促销活动,规则是:从装有编为0,1,2,3四个小球的抽奖箱中同时抽出两个小球,两个小球号码相加之和等于5中一等奖,等于4中二等奖,等于3中三等奖,则中奖的概率是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
复数(
+
i)3的值为( )
| 1 |
| 2 |
| ||
| 2 |
| A、i | B、-i | C、1 | D、-1 |