题目内容
9.f(x)=ax3-x2+x+2,$g(x)=\frac{elnx}{x}$,?x1∈(0,1],?x2∈(0,1],使得f(x1)≥g(x2),则实数a 的取值范围是[-2,+∞).分析 求出g(x)的最大值,问题转化为ax3-x2+x+2≥0在(0,1]恒成立,即a≥$\frac{{x}^{2}-x-2}{{x}^{3}}$在(0,1]恒成立,令h(x)=$\frac{{x}^{2}-x-2}{{x}^{3}}$,x∈(0,1],根据函数的单调性求出a的范围即可.
解答 解:g′(x)=$\frac{e(1-lnx)}{{x}^{2}}$,而x∈(0,1],
故g′(x)>0在(0,1]恒成立,
故g(x)在(0,1]递增,
g(x)max=g(1)=0,
若?x1∈(0,1],?x2∈(0,1],使得f(x1)≥g(x2),
只需f(x)min≥g(x)max即可;
故ax3-x2+x+2≥0在(0,1]恒成立,
即a≥$\frac{{x}^{2}-x-2}{{x}^{3}}$在(0,1]恒成立,
令h(x)=$\frac{{x}^{2}-x-2}{{x}^{3}}$,x∈(0,1],
h′(x)=$\frac{{-(x-1)}^{2}+7}{{x}^{4}}$>0,
h(x)在(0,1]递增,
故h(x)max=h(1)=-2,
故a≥-2,
故答案为:[-2,+∞).
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.
练习册系列答案
相关题目
20.已知a∈R,若方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则此圆心坐标( )
| A. | (-2,-4) | B. | $(-\frac{1}{2},-1)$ | C. | (-2,-4)或$(-\frac{1}{2},-1)$ | D. | 不确定 |
14.已知抛物线方程为x2=2py,且过点(1,4),则抛物线的焦点坐标为( )
| A. | (1,0) | B. | ($\frac{1}{16}$,0) | C. | (0,$\frac{1}{16}$) | D. | (0,1) |
18.已知各项均为正数的数列{an},其前n项和为Sn,且Sn,an,$\frac{1}{2}$成等差数列,则数列{an}的通项公式为( )
| A. | 2n-4 | B. | 2n-3 | C. | 2n-2 | D. | 2n-1 |