题目内容
19.设n为正整数,f(n)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$,计算得f(2)=$\frac{3}{2}$,f(4)>2,f(8)>$\frac{5}{2}$,f(16)>3,观察上述结果,按照上面规律,可以推测f(1024)>6.分析 由此规律可得f(2n)≥$\frac{n+2}{2}$,即可得出结论.
解答 解:由题意,f(2)=$\frac{3}{2}$,f(4)>2,f(8)>$\frac{5}{2}$,f(16)>3,可得f(2n)≥$\frac{n+2}{2}$,
推测f(1024)>6
故答案为6.
点评 本题考查归纳推理,把已知的式子变形找规律是解决问题的关键,属基础题.
练习册系列答案
相关题目
10.空气污染,又称为大气污染,是指由于人类活动或自然过程引起某些物质进入大气中,呈现处足够的浓度,达到足够的时间,并因此危害了人体的舒适、健康和福利或环境的现象.全世界也越来越关注环境保护问题.当空气污染指数(单位:μg/m3)为0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为100~150时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;当空气污染指数为200~300时,空气质量级别为五级,空气质量状况属于重度污染;当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.2016年8月某日某省x个监测点数据统计如下:
(Ⅰ)根据所给统计表和频率分布直方图中的信息求出x,y的值,并完成频率分布直方图;
(Ⅱ)在空气污染指数分别为50~100和150~200的监测点中,用分层抽样的方法抽取10个监测点,从中任意选取4个监测点,求这4个监测点中空气质量为良的个数ξ的期望.
| 空气污染指数 (单位:μg/m3) | [0,50] | (50,100] | (100,150] | (150,200] |
| 监测点个数 | 15 | 40 | y | 10 |
(Ⅱ)在空气污染指数分别为50~100和150~200的监测点中,用分层抽样的方法抽取10个监测点,从中任意选取4个监测点,求这4个监测点中空气质量为良的个数ξ的期望.
7.下列抛物线中,焦点到准线距离最小的是( )
| A. | y2=-x | B. | y2=2x | C. | 2x2=y | D. | x2=-4y |
14.已知点M(-2,2)在抛物线C:y2=2px(p>0)的准线上,记抛物线C的焦点为F,则直线MF的方程为( )
| A. | x-2y+6=0 | B. | x+2y-2=0 | C. | 2x-y+6=0 | D. | 2x+y+2=0 |
4.若m、n为两条不重合的直线,α、β为两个不重合的平面,
①如果α∥β,m?α,那么m∥β;
②如果m∥β,m?α,α∩β=n,那么m∥n;
③如果m⊥α,β⊥α,那么m∥β;
④如果m⊥n,m⊥α,n∥β,那么α⊥β;
其中正确的命题是( )
①如果α∥β,m?α,那么m∥β;
②如果m∥β,m?α,α∩β=n,那么m∥n;
③如果m⊥α,β⊥α,那么m∥β;
④如果m⊥n,m⊥α,n∥β,那么α⊥β;
其中正确的命题是( )
| A. | ①② | B. | ①③ | C. | ①④ | D. | ③④ |
11.若sinα>0且tanα<0,则$\frac{α}{2}$的终边在( )
| A. | 第一象限 | B. | 第二象限 | ||
| C. | 第一象限或第三象限 | D. | 第三象限或第四象限 |
8.设(1+i)(x+yi)=2,其中x,y是实数,则|2x+yi|=( )
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{5}$ |