题目内容

13.各项均不相等的等差数列{an}前n项和为Sn,已知S5=40,且a1,a3,a7成等比数列.
(I)求数列{an}的通项公式;
(Ⅱ)令bn=(-1)n$\frac{2n+3}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

分析 (I)设等差数列{an}的公差为d≠0,由于S5=40,且a1,a3,a7成等比数列.课堂5a1+$\frac{5×4}{2}$d=40,${a}_{3}^{2}$=a1a7,即$({a}_{1}+2d)^{2}$=a1(a1+6d),联立解出即可得出.
(II)bn=(-1)n$\frac{2n+3}{{a}_{n}{a}_{n+1}}$=$(-1)^{n}\frac{2n+3}{(2n+2)(2n+4)}$=(-1)n$\frac{1}{4}$$(\frac{1}{n+1}+\frac{1}{n+2})$,对n分类讨论,利用“裂项求和”方法即可得出.

解答 解:(I)设等差数列{an}的公差为d≠0,∵S5=40,且a1,a3,a7成等比数列.
∴5a1+$\frac{5×4}{2}$d=40,${a}_{3}^{2}$=a1a7,即$({a}_{1}+2d)^{2}$=a1(a1+6d),
联立解得a1=4,d=2.
∴an=4+2(n-1)=2n+2.
(II)bn=(-1)n$\frac{2n+3}{{a}_{n}{a}_{n+1}}$=$(-1)^{n}\frac{2n+3}{(2n+2)(2n+4)}$=(-1)n$\frac{1}{4}$$(\frac{1}{n+1}+\frac{1}{n+2})$,
∴数列{bn}的前n项和Tn=T2k=$\frac{1}{4}$$[-(\frac{1}{2}+\frac{1}{3})+(\frac{1}{3}+\frac{1}{4})$-…+$(\frac{1}{n+1}+\frac{1}{n+2})]$=$\frac{1}{4}(\frac{1}{n+2}-\frac{1}{2})$=$\frac{-n}{8(n+2)}$.
Tn=T2k-1=T2k-$\frac{1}{4}(\frac{1}{n+1}+\frac{1}{n+2})$=$\frac{-(n+1)}{8(n+3)}$-$\frac{1}{4}(\frac{1}{n+2}+\frac{1}{n+3})$=-$\frac{n+4}{8(n+2)}$.
∴Tn=$\left\{\begin{array}{l}{\frac{-n}{8(n+2)},n=2k}\\{\frac{-(n+4)}{8(n+2)},n=2k-1}\end{array}\right.$(k∈N*).

点评 本题考查了等差数列与等比数列的通项公式、“裂项求和”方法、分类讨论方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网