题目内容

2.已知函数f(x)=2sin(ωx+$\frac{π}{3}$)(ω>0)的图象与函数g(x)=cos(2x+φ)(|φ|<$\frac{π}{2}$)的图象的对称中心完全相同,则φ=(  )
A.$\frac{π}{6}$B.-$\frac{π}{6}$C.$\frac{π}{3}$D.-$\frac{π}{3}$

分析 f(x)与g(x)的对称中心相同,则函数的周期相同,求出ω=2,然后根据分别求出两个函数的对称中心,建立方程关系进行求解即可.

解答 解:由题意可得函数f(x)与函数g(x)的周期相同,即 $\frac{2π}{ω}$=$\frac{2π}{2}$,∴ω=2,
∴f(x)=2sin(2x+$\frac{π}{3}$),它的对称中心的横坐标m满足2m+$\frac{π}{3}$=kπ,
即 m=$\frac{kπ}{2}$-$\frac{π}{6}$,k∈Z,对称中心的坐标为($\frac{kπ}{2}$-$\frac{π}{6}$,0),k∈Z.
根据f(x)=2sin(2x+$\frac{π}{3}$)的图象与函数g(x)=cos(2x+φ)(|φ|<$\frac{π}{2}$)的图象的对称中心完全相同,
∴cos[2•($\frac{kπ}{2}$-$\frac{π}{6}$)+φ]=cos(kπ-$\frac{π}{3}$+φ)=0,∴φ=-$\frac{π}{6}$,
故选:B.

点评 本题主要考查三角函数对称性、周期性的应用,求得2kπ-$\frac{π}{6}$=φ,是解决本题的关键,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网