题目内容
一个几何体的三视图如图所示,则这个几何体的体积为( )

| A、6.5 | B、7 | C、7.5 | D、8 |
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:根据几何体的三视图判断该几何体的形状,是正方体上部去掉一个底面为等腰直角三角形,高为1的三棱柱,结合数据求出该几何体的体积.
解答:
解:由几何体的三视图知,该几何体是正方体上部去掉一个底面边长为1的等腰直角三角形,高为1的三棱柱,
∴该几何体的体积为V几何体=V正方体-V三棱柱=23-
×12×1=8-
=7.5.
故选:C.
∴该几何体的体积为V几何体=V正方体-V三棱柱=23-
| 1 |
| 2 |
| 1 |
| 2 |
故选:C.
点评:本题考查了由三视图求几何体的体积的问题,解题的关键是判断几何体的形状,是基础题.
练习册系列答案
相关题目
“中华人民共和国个人所得税法”第六条规定,公民全月工资,薪金所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额,此项税款按下表分段累计计算:
某人今年一月份应纳此项税款为403元,那么他当月工资的工资,薪金所得为( )
| 全月应纳税所得额 | 税率 |
| 不超过1500元部分 | 3% |
| 超过1500不超过4500元部分 | 10% |
| 超过4500元至9000元部分 | 20% |
| 超过9000元至35000元部分 | 25% |
| … | … |
| A、8290元 |
| B、7765元 |
| C、7540元 |
| D、6790元 |
已知双曲线的中心在原点,焦点在x轴上,一条渐进线方程是y=
x,那么它的离心率是( )
| 2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
设双曲线
-
=1(a>0,b>0)的左、右焦点分别是F1、F2,过点F2的直线交双曲线右支于不同的两点M、N.若△MNF1为正三角形,则该双曲线的离心率为( )
| x2 |
| a2 |
| y2 |
| b2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
对于非零向量
,
,定义一种向量积:
•
=
.已知非零向量
,
的夹角θ,∈(0,
),且
•
,
•
都在集合{
|n∈Z}中.则
•
=( )
| α |
| β |
| α |
| β |
| ||||
|
| a |
| b |
| π |
| 4 |
| a |
| b |
| b |
| a |
| n |
| 2 |
| a |
| b |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
已知F1,F2,为椭圆
+
=1(a>b>0)的两个焦点,过F2作椭圆的弦AB,若△AF1B的周长为16,椭圆的焦距是4
,则椭圆的方程为( )
| x2 |
| a2 |
| y2 |
| b2 |
| 3 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|