题目内容
数列{an}、{bn}的每一项都是正数,a1=8,b1=16,且an、bn、an+1成等差数列,bn、an+1、bn+1成等比数列,n=1,2,3,….
(Ⅰ)求a2、b2的值;
(Ⅱ)求数列{an}、{bn}的通项公式;
(Ⅲ)证明:对一切正整数n,有
+
+
+…+
<
.
(Ⅰ)求a2、b2的值;
(Ⅱ)求数列{an}、{bn}的通项公式;
(Ⅲ)证明:对一切正整数n,有
| 1 |
| a1-1 |
| 1 |
| a2-1 |
| 1 |
| a3-1 |
| 1 |
| an-1 |
| 2 |
| 7 |
考点:数列与不等式的综合,数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件得2b1=a1+a2,
=b1b2,由此能求出a2、b2的值.
(Ⅱ)由已知条件推导出2bn=an+an+1.
=bnbn+1,an+1=
,由此能求出bn=4(n+1)2,an=4n(n+1).
(Ⅲ)由(Ⅱ)可知,所证明的不等式为
+
+
+…+
<
,可以用三种不同的方法进行证明.
| a | 2 2 |
(Ⅱ)由已知条件推导出2bn=an+an+1.
| a | 2 n+1 |
| bnbn+1 |
(Ⅲ)由(Ⅱ)可知,所证明的不等式为
| 1 |
| 7 |
| 1 |
| 23 |
| 1 |
| 47 |
| 1 |
| 4n2+4n-1 |
| 2 |
| 7 |
解答:
(本题满分14分)
(Ⅰ)解:∵a1=8,b1=16,且an、bn、an+1成等差数列,
∴2b1=a1+a2,得a2=2b1-a1=32-8=24.…(1分)
∵bn、an+1、bn+1成等比数列,
∴
=b1b2,得b2=
=36.…(2分)
(Ⅱ)解:∵an、bn、an+1成等差数列,∴2bn=an+an+1…①.…(3分)
∵bn、an+1、bn+1成等比数列,∴
=bnbn+1,
∵数列{an}、{bn}的每一项都是正数,∴an+1=
…②.…(4分)
∴当n≥2时,an=
…③.…(5分)
将②、③代入①式,得2
=
+
,
∴数列{
}是首项为4,公差为2的等差数列,
∴
=
+(n-1)d=2n+2,
∴bn=4(n+1)2.…(6分)
由③式得当n≥2时,an=
=
=4n(n+1).…(7分)
当n=1时,a1=8,满足该式子,
∴对一切正整数n,都有an=4n(n+1).…(8分)
(Ⅲ)证明:由(Ⅱ)可知,所证明的不等式为
+
+
+…+
<
.…(9分)
方法一:首先证明
<
(
-
)(n≥2).
∵
<
(
-
)?
<
?7n2+7n<8n2+8n-2,
∴n2+n-2>0?(n-1)(n+2)>0,
所以当n≥2时,
+
+…+
<
+
[(
-
)+…+(
-
)]<
+
×
=
.…(12分)
当n=1时,
<
.…(13分)
综上所述,对一切正整数n,有
+
+
+…+
<
…(14分)
方法二:
<
=
=
(
-
).
当n≥3时,
+
+…+
<
+
+
[(
-
)+(
-
)+…+(
-
)+(
-
)]<
+
+
(
+
)<
+
+
=
.…(12分)
当n=1时,
<
;当n=2时,
+
<
+
=
.…(13分)
综上所述,对一切正整数n,有
+
+
+…+
<
…(14分)
方法三:
<
=
=
(
-
).
当n≥4时,
+
+…+
<
+
+
+
[(
-
)+(
-
)+…+(
-
)+(
-
)]<
+
+
+
<
.…(12分)
当n=1时,
<
;当n=2时,
+
<
+
=
;
当n=3时,
+
+
<
+
+
=
.…(13分)
综上所述,对一切正整数n,有
+
+
+…+
<
…(14分).
(Ⅰ)解:∵a1=8,b1=16,且an、bn、an+1成等差数列,
∴2b1=a1+a2,得a2=2b1-a1=32-8=24.…(1分)
∵bn、an+1、bn+1成等比数列,
∴
| a | 2 2 |
| ||
| b1 |
(Ⅱ)解:∵an、bn、an+1成等差数列,∴2bn=an+an+1…①.…(3分)
∵bn、an+1、bn+1成等比数列,∴
| a | 2 n+1 |
∵数列{an}、{bn}的每一项都是正数,∴an+1=
| bnbn+1 |
∴当n≥2时,an=
| bn-1bn |
将②、③代入①式,得2
| bn |
| bn-1 |
| bn+1 |
∴数列{
| bn |
∴
| bn |
| b1 |
∴bn=4(n+1)2.…(6分)
由③式得当n≥2时,an=
| bn-1bn |
| 4n2•4(n+1)2 |
当n=1时,a1=8,满足该式子,
∴对一切正整数n,都有an=4n(n+1).…(8分)
(Ⅲ)证明:由(Ⅱ)可知,所证明的不等式为
| 1 |
| 7 |
| 1 |
| 23 |
| 1 |
| 47 |
| 1 |
| 4n2+4n-1 |
| 2 |
| 7 |
方法一:首先证明
| 1 |
| 4n2+4n-1 |
| 2 |
| 7 |
| 1 |
| n |
| 1 |
| n+1 |
∵
| 1 |
| 4n2+4n-1 |
| 2 |
| 7 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 4n2+4n-1 |
| 2 |
| 7n2+7n |
∴n2+n-2>0?(n-1)(n+2)>0,
所以当n≥2时,
| 1 |
| 7 |
| 1 |
| 23 |
| 1 |
| 4n2+4n-1 |
| 1 |
| 7 |
| 2 |
| 7 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 7 |
| 2 |
| 7 |
| 1 |
| 2 |
| 2 |
| 7 |
当n=1时,
| 1 |
| 7 |
| 2 |
| 7 |
综上所述,对一切正整数n,有
| 1 |
| a1-1 |
| 1 |
| a2-1 |
| 1 |
| a3-1 |
| 1 |
| an-1 |
| 2 |
| 7 |
方法二:
| 1 |
| 4n2+4n-1 |
| 1 |
| 4n2+4n-3 |
| 1 |
| (2n-1)(2n+3) |
| 1 |
| 4 |
| 1 |
| 2n-1 |
| 1 |
| 2n+3 |
当n≥3时,
| 1 |
| 7 |
| 1 |
| 23 |
| 1 |
| 4n2+4n-1 |
| 1 |
| 7 |
| 1 |
| 23 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 9 |
| 1 |
| 7 |
| 1 |
| 11 |
| 1 |
| 2n-3 |
| 1 |
| 2n+1 |
| 1 |
| 2n-1 |
| 1 |
| 2n+3 |
| 1 |
| 7 |
| 1 |
| 23 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 14 |
| 1 |
| 14 |
| 2 |
| 7 |
当n=1时,
| 1 |
| 7 |
| 2 |
| 7 |
| 1 |
| 7 |
| 1 |
| 23 |
| 1 |
| 7 |
| 1 |
| 7 |
| 2 |
| 7 |
综上所述,对一切正整数n,有
| 1 |
| a1-1 |
| 1 |
| a2-1 |
| 1 |
| a3-1 |
| 1 |
| an-1 |
| 2 |
| 7 |
方法三:
| 1 |
| 4n2+4n-1 |
| 1 |
| 4n2-1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
当n≥4时,
| 1 |
| 7 |
| 1 |
| 23 |
| 1 |
| 4n2+4n-1 |
| 1 |
| 7 |
| 1 |
| 23 |
| 1 |
| 47 |
| 1 |
| 2 |
| 1 |
| 7 |
| 1 |
| 9 |
| 1 |
| 9 |
| 1 |
| 11 |
| 1 |
| 2n-3 |
| 1 |
| 2n-1 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 7 |
| 1 |
| 23 |
| 1 |
| 47 |
| 1 |
| 14 |
| 2 |
| 7 |
当n=1时,
| 1 |
| 7 |
| 2 |
| 7 |
| 1 |
| 7 |
| 1 |
| 23 |
| 1 |
| 7 |
| 1 |
| 7 |
| 2 |
| 7 |
当n=3时,
| 1 |
| 7 |
| 1 |
| 23 |
| 1 |
| 47 |
| 1 |
| 7 |
| 1 |
| 14 |
| 1 |
| 14 |
| 2 |
| 7 |
综上所述,对一切正整数n,有
| 1 |
| a1-1 |
| 1 |
| a2-1 |
| 1 |
| a3-1 |
| 1 |
| an-1 |
| 2 |
| 7 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,一题多证能够培养学生举一反三的能力.
练习册系列答案
相关题目
已知A、B、C三点共线,O是这条直线外一点,设
=
,
=
,
=
,且存在实数m,使m
-3
-
=
成立,则点A分
的比为( )
| OA |
| a |
| OB |
| b |
| OC |
| c |
| a |
| b |
| c |
| 0 |
| BC |
A、-
| ||
B、-
| ||
C、
| ||
D、
|
已知数列{an}是等比数列,且a1+a3=-3,a2a4=4,则公比q的值是( )
A、
| ||
| B、-2 | ||
C、±
| ||
| D、±2 |