题目内容

已知数列{an}满足anan+1an+2an+3=24,且a1=1,a2=2,a3=3,则a1+a2+a3+…+a2013+a2014=
 
考点:数列的求和
专题:等差数列与等比数列
分析:由已知条件推导出数列{an}是以4为周期的周期数列,由此能求出a1+a2+a3+…+a2013+a2014的值.
解答: 解:∵数列{an}满足anan+1an+2an+3=24,
∴a1a2a3a4=24,
a4=
24
a1a2a3
=
24
1×2×3
=4,
∵anan+1an+2an+3=24,
∴an+1an+2an+3an+4=24,
∴an+4=an
∴数列{an}是以4为周期的周期数列,
2014=503×4+2,
∴a1+a2+a3+…+a2013+a2014=503×(1+2+3+4)+1+2
=5033.
故答案为:5033.
点评:本题考查数列的前2014项和的求法,是中档题,解题时要认真审题,注意数列的周期性的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网