题目内容

如图,在长方形ABCD中,AB=4,BC=1,E为DC的四等分点(靠近C处),F为线段EC上一动点(包括端点),现将△AFD沿AF折起,使D点在平面内的射影恰好落在边AB上,则当F运动时,二面角D-AF-B的平面角余弦值的变化范围为
 
考点:二面角的平面角及求法
专题:空间位置关系与距离
分析:过点D作DM⊥AF于点O,交AB于点M,不妨设二面角D-AF-B的平面解为θ,则cosθ=
MO
OD
=
OA
OF
=
1
x2
,从而求其取值范围.
解答: 解:如图,过点D作DM⊥AF于点O,交AB于点M,不妨设二面角D-AF-B的平面解为θ,
则cosθ=
OM
OD

设DF=x,3≤x≤4,由勾股定理,
OD=
x
x2+1
,OF=
x4
x2+1
,OA=
1
x2+1

∴cosθ=
MO
OD
=
OA
OF
=
1
x2
在[3,4]上是减函数,
1
16
cosθ
1
9

故答案为:[
1
16
1
9
]
点评:本题考查了学生的作图能力及空间想象力,注意折起前后的等量关系是本题解决的关键,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网