ÌâÄ¿ÄÚÈÝ
| 3 |
| 3 |
| OC |
| OA |
| OB |
£¨1£©ÇóÔ²OµÄ·½³Ì¼°ÇúÏߦ£µÄ¹ì¼£·½³Ì£»
£¨2£©ÈôÖ±Ïßy=xºÍy=-x·Ö±ð½»ÇúÏߦ£ÓÚµãA¡¢CºÍB¡¢D£¬ÇóËıßÐÎABCDµÄÖܳ¤£»
£¨3£©ÒÑÖªÇúÏߦ£ÎªÍÖÔ²£¬Ð´³öÍÖÔ²¦£µÄ¶Ô³ÆÖá¡¢¶¥µã×ø±ê¡¢·¶Î§ºÍ½¹µã×ø±ê£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺¼ÆËãÌâ,Ô²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨1£©Çó³öÔ²OµÄ°ë¾¶£¬Ð´³öÔ²OµÄ·½³Ì£¬ÀûÓÃ
=x
+y
£¬Çó³öÇúÏߦ£µÄ·½³Ì£®
£¨2£©ÀûÓÃÖ±ÏßÓëÇúÏß·½³ÌÁªÁ¢£¬
£¬Çó³öA£¬C£¬B£¬D£¬È»ºóÇó³öËıßÐÎABCDµÄÖܳ¤£®
£¨3£©ÉèÇúÏߦ£ÉÏÈÎÒ»µãµÄ×ø±êΪP£¨x0£¬y0£©£¬µãP¹ØÓÚÖ±Ïßy=xµÄ¶Ô³ÆµãΪP1£¨y0£¬x0£©£¬ËµÃ÷µãP1ÔÚÇúÏߦ£ÉÏ£¬¹ÊÇúÏߦ£¹ØÓÚÖ±Ïßy=x¶Ô³Æ£¬ÇúÏߦ£¹ØÓÚÖ±Ïßy=-xºÍÔµã¶Ô³Æ£®Çó³öx2+y2+xy=1ºÍÖ±Ïßy=-xµÄ½»µã×ø±êΪA1£¬A2£¬Çó½â¼´¿É£®
| OC |
| OA |
| OB |
£¨2£©ÀûÓÃÖ±ÏßÓëÇúÏß·½³ÌÁªÁ¢£¬
|
£¨3£©ÉèÇúÏߦ£ÉÏÈÎÒ»µãµÄ×ø±êΪP£¨x0£¬y0£©£¬µãP¹ØÓÚÖ±Ïßy=xµÄ¶Ô³ÆµãΪP1£¨y0£¬x0£©£¬ËµÃ÷µãP1ÔÚÇúÏߦ£ÉÏ£¬¹ÊÇúÏߦ£¹ØÓÚÖ±Ïßy=x¶Ô³Æ£¬ÇúÏߦ£¹ØÓÚÖ±Ïßy=-xºÍÔµã¶Ô³Æ£®Çó³öx2+y2+xy=1ºÍÖ±Ïßy=-xµÄ½»µã×ø±êΪA1£¬A2£¬Çó½â¼´¿É£®
½â´ð£º
½â£º£¨1£©ÓÉÌâÒâÔ²OµÄ°ë¾¶r=
=1£¬
¹ÊÔ²OµÄ·½³ÌΪx2+y2=1£®¡£¨2·Ö£©
ÓÉ
=x
+y
µÃ£¬
2=(x
+y
)2£¬
¼´
2=x2
2+y2
2+2xy|
||
|cos60¡ã£¬
µÃx2+y2+xy=1£¨x£¬y¡Ê[-
£¬
]£©ÎªÇúÏߦ£µÄ·½³Ì£®£¨Î´Ð´x£¬y·¶Î§²»¿Û·Ö£©¡£¨4·Ö£©
£¨2£©ÓÉ
½âµÃ£º
»ò
£¬
ËùÒÔ£¬A£¨
£¬
£©£¬C£¨-
£¬-
£©
ͬÀí£¬¿ÉÇóµÃB£¨1£¬-1£©£¬D£¨-1£¬1£©
ËùÒÔ£¬ËıßÐÎABCDµÄÖܳ¤Îª£º
£¨3£©ÇúÏߦ£µÄ·½³ÌΪx2+y2+xy=1£¨x£¬y¡Ê[-
£¬
]£©£¬
Ëü¹ØÓÚÖ±Ïßy=x¡¢y=-xºÍÔµã¶Ô³Æ£¬ÏÂÃæÖ¤Ã÷£º
ÉèÇúÏߦ£ÉÏÈÎÒ»µãµÄ×ø±êΪP£¨x0£¬y0£©£¬Ôòx02+y02+x0y0=1£¬
µãP¹ØÓÚÖ±Ïßy=xµÄ¶Ô³ÆµãΪP1£¨y0£¬x0£©£¬ÏÔÈ»y02+x02+y0x0=1£¬
ËùÒÔµãP1ÔÚÇúÏߦ£ÉÏ£¬¹ÊÇúÏߦ£¹ØÓÚÖ±Ïßy=x¶Ô³Æ£¬
ͬÀíÇúÏߦ£¹ØÓÚÖ±Ïßy=-xºÍÔµã¶Ô³Æ£®
¿ÉÒÔÇóµÃx2+y2+xy=1ºÍÖ±Ïßy=xµÄ½»µã×ø±êΪB1(-
£¬-
)£¬B2(
£¬
)£¬
x2+y2+xy=1ºÍÖ±Ïßy=-xµÄ½»µã×ø±êΪA1£¨-1£¬1£©£¬A2£¨1£¬-1£©£¬
¡à|OA1|=
£¬|OB1|=
£¬¡à
=
£¬
¡à
=
£®
ÔÚy=-xÉÏÈ¡µãF1(-
£¬
)£¬F2(
£¬-
)£®
ÇúÏߦ£ÎªÍÖÔ²£º
Æä½¹µã×ø±êΪF1(-
£¬
)£¬F2(
£¬-
)£®
| 2 | ||||
|
¹ÊÔ²OµÄ·½³ÌΪx2+y2=1£®¡£¨2·Ö£©
ÓÉ
| OC |
| OA |
| OB |
| OC |
| OA |
| OB |
¼´
| OC |
| OA |
| OB |
| OA |
| OB |
µÃx2+y2+xy=1£¨x£¬y¡Ê[-
2
| ||
| 3 |
2
| ||
| 3 |
£¨2£©ÓÉ
|
|
|
ËùÒÔ£¬A£¨
| ||
| 3 |
| ||
| 3 |
| ||
| 3 |
| ||
| 3 |
ͬÀí£¬¿ÉÇóµÃB£¨1£¬-1£©£¬D£¨-1£¬1£©
ËùÒÔ£¬ËıßÐÎABCDµÄÖܳ¤Îª£º
| 17 |
| 9 |
£¨3£©ÇúÏߦ£µÄ·½³ÌΪx2+y2+xy=1£¨x£¬y¡Ê[-
2
| ||
| 3 |
2
| ||
| 3 |
Ëü¹ØÓÚÖ±Ïßy=x¡¢y=-xºÍÔµã¶Ô³Æ£¬ÏÂÃæÖ¤Ã÷£º
ÉèÇúÏߦ£ÉÏÈÎÒ»µãµÄ×ø±êΪP£¨x0£¬y0£©£¬Ôòx02+y02+x0y0=1£¬
µãP¹ØÓÚÖ±Ïßy=xµÄ¶Ô³ÆµãΪP1£¨y0£¬x0£©£¬ÏÔÈ»y02+x02+y0x0=1£¬
ËùÒÔµãP1ÔÚÇúÏߦ£ÉÏ£¬¹ÊÇúÏߦ£¹ØÓÚÖ±Ïßy=x¶Ô³Æ£¬
ͬÀíÇúÏߦ£¹ØÓÚÖ±Ïßy=-xºÍÔµã¶Ô³Æ£®
¿ÉÒÔÇóµÃx2+y2+xy=1ºÍÖ±Ïßy=xµÄ½»µã×ø±êΪB1(-
| ||
| 3 |
| ||
| 3 |
| ||
| 3 |
| ||
| 3 |
x2+y2+xy=1ºÍÖ±Ïßy=-xµÄ½»µã×ø±êΪA1£¨-1£¬1£©£¬A2£¨1£¬-1£©£¬
¡à|OA1|=
| 2 |
| ||
| 3 |
| |OA1|2-|OB1|2 |
2
| ||
| 3 |
¡à
| ||
|
| ||
| 3 |
ÔÚy=-xÉÏÈ¡µãF1(-
| ||
| 3 |
| ||
| 3 |
| ||
| 3 |
| ||
| 3 |
ÇúÏߦ£ÎªÍÖÔ²£º
Æä½¹µã×ø±êΪF1(-
| ||
| 3 |
| ||
| 3 |
| ||
| 3 |
| ||
| 3 |
µãÆÀ£º±¾Ì⿼²éÔ²µÄ·½³ÌÒÔ¼°ÇúÏ߹켣·½³ÌµÄÇ󷨣¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄÓ¦Óã¬ÍÖÔ²µÄ»ù±¾ÖªÊ¶µÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖª¼¯ºÏM={x|x£¼1}£¬¼¯ºÏN={y|y£¾0}£¬ÔòM¡ÉN=£¨¡¡¡¡£©
| A¡¢{x|x£¼1} |
| B¡¢{x|x£¾1} |
| C¡¢{x|0£¼x£¼1} |
| D¡¢∅ |
Èç¹ûÖ±Ïß3x-
y+m=0ÓëË«ÇúÏßC£º
-
=1£¨a£¾0£¬b£¾0£©ºãÓÐÁ½¸ö¹«¹²µã£¬ÔòË«ÇúÏßCµÄÀëÐÄÂʵÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| 3 |
| x2 |
| a2 |
| y2 |
| b2 |
| A¡¢£¨1£¬2£© |
| B¡¢£¨2£¬+¡Þ£© |
| C¡¢£¨1£¬2] |
| D¡¢[2£¬+¡Þ£© |
ÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÄÜʹÊäÈëµÄxÖµÓëÊä³öµÄyÖµÏàµÈµÄxÖµ¸öÊýΪ£¨¡¡¡¡£©

| A¡¢1 | B¡¢2 | C¡¢3 | D¡¢4 |