ÌâÄ¿ÄÚÈÝ

Èçͼ£¬Ô²OÓëÖ±Ïßx+
3
y+2=0ÏàÇÐÓÚµãP£¬ÓëxÕý°ëÖá½»ÓÚµãA£¬ÓëÖ±Ïßy=
3
xÔÚµÚÒ»ÏóÏ޵Ľ»µãΪB£®µãCΪԲOÉÏÈÎÒ»µã£¬ÇÒÂú×ã
OC
=x
OA
+y
OB
£¬¶¯µãD£¨x£¬y£©µÄ¹ì¼£¼ÇΪÇúÏߦ££®
£¨1£©ÇóÔ²OµÄ·½³Ì¼°ÇúÏߦ£µÄ¹ì¼£·½³Ì£»
£¨2£©ÈôÖ±Ïßy=xºÍy=-x·Ö±ð½»ÇúÏߦ£ÓÚµãA¡¢CºÍB¡¢D£¬ÇóËıßÐÎABCDµÄÖܳ¤£»
£¨3£©ÒÑÖªÇúÏߦ£ÎªÍÖÔ²£¬Ð´³öÍÖÔ²¦£µÄ¶Ô³ÆÖá¡¢¶¥µã×ø±ê¡¢·¶Î§ºÍ½¹µã×ø±ê£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺¼ÆËãÌâ,Ô²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨1£©Çó³öÔ²OµÄ°ë¾¶£¬Ð´³öÔ²OµÄ·½³Ì£¬ÀûÓÃ
OC
=x
OA
+y
OB
£¬Çó³öÇúÏߦ£µÄ·½³Ì£®
£¨2£©ÀûÓÃÖ±ÏßÓëÇúÏß·½³ÌÁªÁ¢£¬
y=x
x2+y2+xy=1
£¬Çó³öA£¬C£¬B£¬D£¬È»ºóÇó³öËıßÐÎABCDµÄÖܳ¤£®
£¨3£©ÉèÇúÏߦ£ÉÏÈÎÒ»µãµÄ×ø±êΪP£¨x0£¬y0£©£¬µãP¹ØÓÚÖ±Ïßy=xµÄ¶Ô³ÆµãΪP1£¨y0£¬x0£©£¬ËµÃ÷µãP1ÔÚÇúÏߦ£ÉÏ£¬¹ÊÇúÏߦ£¹ØÓÚÖ±Ïßy=x¶Ô³Æ£¬ÇúÏߦ£¹ØÓÚÖ±Ïßy=-xºÍÔ­µã¶Ô³Æ£®Çó³öx2+y2+xy=1ºÍÖ±Ïßy=-xµÄ½»µã×ø±êΪA1£¬A2£¬Çó½â¼´¿É£®
½â´ð£º ½â£º£¨1£©ÓÉÌâÒâÔ²OµÄ°ë¾¶r=
2
12+(
3
)
2
=1
£¬
¹ÊÔ²OµÄ·½³ÌΪx2+y2=1£®¡­£¨2·Ö£©
ÓÉ
OC
=x
OA
+y
OB
µÃ£¬
OC
2
=(x
OA
+y
OB
)2
£¬
¼´
OC
2
=x2
OA
2
+y2
OB
2
+2xy|
OA
||
OB
|cos60¡ã
£¬
µÃx2+y2+xy=1£¨x£¬y¡Ê[-
2
3
3
£¬
2
3
3
]
£©ÎªÇúÏߦ£µÄ·½³Ì£®£¨Î´Ð´x£¬y·¶Î§²»¿Û·Ö£©¡­£¨4·Ö£©
£¨2£©ÓÉ
y=x
x2+y2+xy=1
½âµÃ£º
x=
3
3
y=
3
3
»ò
x=-
3
3
y=-
3
3
£¬
ËùÒÔ£¬A£¨
3
3
£¬
3
3
£©£¬C£¨-
3
3
£¬-
3
3
£©
ͬÀí£¬¿ÉÇóµÃB£¨1£¬-1£©£¬D£¨-1£¬1£©
ËùÒÔ£¬ËıßÐÎABCDµÄÖܳ¤Îª£º
17
9

£¨3£©ÇúÏߦ£µÄ·½³ÌΪx2+y2+xy=1£¨x£¬y¡Ê[-
2
3
3
£¬
2
3
3
]
£©£¬
Ëü¹ØÓÚÖ±Ïßy=x¡¢y=-xºÍÔ­µã¶Ô³Æ£¬ÏÂÃæÖ¤Ã÷£º
ÉèÇúÏߦ£ÉÏÈÎÒ»µãµÄ×ø±êΪP£¨x0£¬y0£©£¬Ôòx02+y02+x0y0=1£¬
µãP¹ØÓÚÖ±Ïßy=xµÄ¶Ô³ÆµãΪP1£¨y0£¬x0£©£¬ÏÔÈ»y02+x02+y0x0=1£¬
ËùÒÔµãP1ÔÚÇúÏߦ£ÉÏ£¬¹ÊÇúÏߦ£¹ØÓÚÖ±Ïßy=x¶Ô³Æ£¬
ͬÀíÇúÏߦ£¹ØÓÚÖ±Ïßy=-xºÍÔ­µã¶Ô³Æ£®
¿ÉÒÔÇóµÃx2+y2+xy=1ºÍÖ±Ïßy=xµÄ½»µã×ø±êΪB1(-
3
3
£¬-
3
3
)£¬B2(
3
3
£¬
3
3
)
£¬
x2+y2+xy=1ºÍÖ±Ïßy=-xµÄ½»µã×ø±êΪA1£¨-1£¬1£©£¬A2£¨1£¬-1£©£¬
¡à|OA1|=
2
£¬|OB1|=
6
3
£¬¡à
|OA1|2-|OB1|2
=
2
3
3
£¬
¡à
|OA1|2-|OB1|2
2
=
6
3
£®
ÔÚy=-xÉÏÈ¡µãF1(-
6
3
£¬
6
3
)£¬F2(
6
3
£¬-
6
3
)
£®
ÇúÏߦ£ÎªÍÖÔ²£º
Æä½¹µã×ø±êΪF1(-
6
3
£¬
6
3
)£¬F2(
6
3
£¬-
6
3
)
£®
µãÆÀ£º±¾Ì⿼²éÔ²µÄ·½³ÌÒÔ¼°ÇúÏ߹켣·½³ÌµÄÇ󷨣¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄÓ¦Óã¬ÍÖÔ²µÄ»ù±¾ÖªÊ¶µÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø